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INTRODUCTION 

 

DEEP WATER SOUND PROPAGATION 

 

Speed of sound 

The speed of sound at a point in the ocean depends on the static pressure, temperature and salinity. 

Salinity is fairly constant in deep water away from ice and rivers so salinity changes are not 

important for sound propagation. 

Static pressure increases with depth as 

 P  =  Po  +   g z where Po is atmospheric pressure (105 Pa) 

    and g is the acceleration of gravity (9.8 m/s2) 

The density  is 1028 kg/m3 and is assumed constant. It does however increase slightly with depth. 

[The ocean surface would be 30 m higher if water was incompressible.] 

Sound speed increases with pressure and therefore with depth. 

Sound speed also increases with temperature. In most of the ocean the water is warmest at the 

surface decreasing to about 1.5 - 2 oC beyond about 3000 m depth. Seasonal heating only affects the 

first 100-200 m. 

The combined effect of temperature decreasing to a constant and pressure steadily increasing means 

that in most of the deep ocean there is a sound speed minimum of about 1485 m/s at a depth of 

about 1000 m.  

 

Temperature

Depth

Pressure Sound speed

 
 

Sound speed at the ocean surface is 1508 m/s
2
 for a temperature of 15oC. 

The range of variation of sound speed of 1485 - 1525 is only about 3% of the actual sound speed but 

it has important consequences for the propagation of sound. 

 

SOFAR channel 

In most deep water there is a minimum of sound speed at a depth of about 1000 m. This minimum is 

the SOFAR axis. Sound can become trapped in the SOFAR channel and propagate to long ranges 

with little attenuation. SOFAR stands for Sound Fixing and Ranging as the discovery of the SOFAR 

channel led to speculation that it could be used to pinpoint the location of shipping. 

 

Polar waters 

In polar waters the water temperature varies very little with depth and so the sound speed variation 

is due only to the pressure. The sound speed therefore is minimum at the surface and increases 

linearly with depth.  

The transition from temperate to polar waters is gradual and the minimum of sound speed gradually 

approaches the surface as latitude is increased. 
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Wavefronts and Rays 

The change of sound speed leads to refraction of wavefronts of sound. Wavefronts become closer 

together when the sound speed decreases, leading to bending of the sound waves towards lower 

sound speed. This refraction leads to trapping of sound in the SOFAR channel. 

 

 

 

 
c(z) 

Wavefronts 

Rays 

 
  

 

Rays curve towards the minimum of sound speed. In deep water they cycle up and down about the 

sound speed minimum. 

The figures shows ray traces in a profile with a sound speed minimum at 1000 m depth. The source 

depths are 1000 m and 500 m. 
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1. WAVE EQUATION FOR SOUND WAVES IN A FLUID 

 

Acoustic pressure p is the change in pressure associated with the acoustic disturbance. 

 p = P (instantaneous total pressure)  P0 (average pressure) 

For most problems p,  (change in density) are small and second order terms can be neglected. 

 

Bulk modulus B 

 B  =  
stress

strain
   =   

excess pressure

fractional change in volume
  

 B  =  
p

  
V

V0
 

          (1.1) 

This provides the restoring force for vibrational wave motion. 

 

 

 

 

 

Point (x,y,z) is equilibrium position. 

d  =  (,,) is displacement from equilibrium    [,, are functions of x,y,z,t.]

x, y, z are sides of box at equilibrium position. 

V0  =  x y z  =  volume of box at equilibrium position. 

Change in volume  =  [x + (/x) x] [y + (/y) y] [z + (/z) z]  x y z 

 V  =  [ /x + /y +/z ] x y z 

=> V/V0  =  div d 
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and from (1) 

 p   =     B div d         (1.2) 

 

Newton's Laws

Total force in X direction  =  [ (p/x) x] y z 

Using   F  =  ma 

   (p/x) x y z  =   x y z (
2
/t

2
) 

In three dimensions 

   grad p   =    (
2
d/t

2
)       (1.3) 

Take div 

  div grad p   =    [
2
(div d)/t

2
] 

=>           
2
 p   =    (/B) (

2
p/t

2
) 

=>             
2
 p   =    (1/c

2
) (

2
p/t

2
)       (1.4) 

where  c
2
   =   B/   

 

Wave Equation 

Equation (1.4) can be written 

 
2
p   =   (1/c

2
) (

2
p/t

2
)           (1.5) 

which is the wave equation for small amplitude sound propagation.  

If a harmonic source with time dependence exp(it) is assumed, the pressure will also have time 

dependence exp(it) and we obtain the Helmholtz Equation 

 
2
p  +  (/c)

2
 p   =   0         (1.6)

Displacement potential  d 

Define 

  d   =    grad d         (1.7) 

From (1.2) 

  p  =  B 
2
 d         (1.8) 

Substitute in (1.4) 

   
2
 d   =   (1/c

2
) (

2
d/t

2
)       (1.9) 

i.e. d satisfies the wave equation. 

Displacement potential is important for describing sound in solids because pressure has no meaning 

in a solid and the scalar d is easier to use than the vector d. 
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2. RAY MODELLING 

 

The wave equation for a harmonic (i.e. single frequency) source can be written 

 

 
2
p   +   k

2
 p   =   0         (2.1) 

 

where 
2
 = 

2
/x

2
 + 

2
/y

2
 + 

2
/z

2
 

 

p is the acoustic pressure, k = /c is the wave number and the sound speed c is a function of 

position i.e c(x,y,z). 

 

Consider a solution of the form  p = A e
i

 where A is a slowly varying amplitude and  is a phase. 

Surfaces of constant  all have the same phase i.e. they are wavefronts. 

 

Substituting and separating real and imaginary parts gives 

 

 
2
A    [(/x)

2
 + (/y)

2
 + (/z)

2
] A  +  k

2
A   =   0    

and 

 2 A.  +  A 
2
   =   0        

 

Now assume 
2
A/A << k i.e. the amplitude is slowly varying to obtain 

 

 (/x)
2
 + (/y)

2
 + (/z)

2
    =    k

2
      (2.2) 

  

Now  = constant is a wavefront and the vector grad() = (/x, /y, /z) is normal to the 

wavefront.  

 

If s is the path length along a ray an element ds = (dx, dy, dz) is also normal to the wave front. 

Therefore 

 

 dx/ds   =   (/x)/[(/x)
2
 + (/y)

2
 + (/z)

2
]

1/2
    

 

 where the denominator ensures that  dx
2
 + dy

2
 + dz

2
 = ds

2
 as required. 

 

Hence using Eq. (2.2) we obtain 

 

 dx/ds  =  (1/k) (/x)        (2.3) 

 

We can now eliminate  by noting 

 

 d/ds  =  (/x)(dx/ds) + (/y)(dy/ds) + (/z)(dz/ds) 

   

  =  k (dx/ds)(dx/ds) + k (dy/ds)(dy/ds) + k (dz/ds)(dz/ds) using (2.3) 

   

  =  k 

 

This shows that the derivative of the phase as a function of distance perpendicular to the wavefront 

is equal to the wave number as expected. 
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Now take /x to give 

 

 /x(d/ds)  =  k/x 

 

=> d/ds(/x)  =  k/x 

 

=> d/ds(kdx/ds)  =  k/x   using (2.3) 

 

Finally using k = /c with c(x,y,z) we obtain 

 

 
d

ds
 






1

c
 
dx

ds
  =  



x
 






1

c
          (2.4) 

 

This equation leads to ray tracing. 

 

Ray Solutions 

Consider c = c(z) i.e a function of depth only. 

 

 (d/ds)[(1/c)(dx/ds)]  =  0 

 

=> (1/c)(dx/ds)  =  constant 

 

Similarly 

 (1/c)(dy/ds)  =  constant 

 

=> dy/dx  =  constant 

 

Therefore propagation is confined to a plane. Assume it is y = 0. 

 

 

     x  

      

       dx     is grazing angle

          dz   (i.e. angle relative  

     ds       to horizontal) 

 

 

   z    
 

 

 (1/c)(dx/ds)  =  constant 

 

=> cos / c  =  constant  (Snell's Law) Note that Snell's law for light can be   

       written n1sin = n2sin2 where n  1/c  

       and angles are angles of incidence.

or we can write 

 

 
cos(z)

c(z)
   =   

cos(z0)

c(z0)
          (2.5) 

 

where z0 is some reference depth usually either the source depth or the sound speed minimum. 
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Calculation of ray paths 

Ray paths can be found as follows. 

A ray at an angle  to the horizontal will travel a small distance s which will have horizontal 

component r and vertical component z. 

 

   

       r

 
      z

    s

  
 

Therefore we have  

 

 tan   =  
z

r
   i.e. r  =  

z

tan
  

 

Thus at a given point a ray at angle  moves a horizontal distance r as it moves a vertical distance 

z so we can find its new position. At the new position it has a new angle given by Snell's law. 

 

Writing tan  in terms of z we have  

 

 tan   =  
sin 

cos 
    =   

1 – cos2

cos 
    =   

1

cos2
  –  1    =  

cs
2

c(z)2 cos2s
  –  1  

 

where we have taken the reference depth as the source depth zs with sound speed cs and ray angle 

s. 

 

Combining these results we get 

 

 r   =    






cs

2

c(z)2 cos2s
  –  1

–1/2

  z     or      z   =    






cs

2

c(z)2 cos2s
  –  1

1/2

  r 

 

This is the fundamental ray tracing equation. From a point (r,z) with sound speed c(z) we choose a 

small increment in horizontal range r and the new depth is z + z at the new range r + r. 

Repeated steps trace out the ray path for the ray which has angle s at the depth where the sound 

speed is cs. For accurate ray paths Runge-Kutta integration can be used. 

 

The total horizontal distance travelled is given by the integral 

 r   =   




zs~

z

  






cs

2

c(z')2 cos2s
  –  1

–1/2

  dz'       (2.6) 

where the ray starts at depth zs and finishes at depth z. The notation zs~ means that the ray path is 

followed as it cycles up and down. 

 

This equation relates r and z and is the equation of the ray path for a ray launched at angle s. 
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Cycle distance 

If the sound speed is a function of depth only, as a ray cycles up and down each complete loop is 

identical. The cycle distance is the horizontal distance travelled in one complete loop. If the above 

integral is evaluated between upper and lower turning points of the ray the result will give half the 

cycle distance. 

Usually cycle distance changes with angle i.e. rays which cross the axis at angle 0 will have 

different cycle distances for each value of 0. If nearby rays all have the same cycle distance they 

will converge to a perfect focus at multiples of the cycle distance. 

 

Travel time 

Similarly we can find travel time. 

 t  =  
s

c
   =  

z

c sin 
  

 

 t  =  




zs~

z

 
cs

c(z') cs
2 – c(z')2 cos2s

   dz'       (2.7) 

 

 

Eigenrays 

The sound field at a point due to a source at another point can be found, in principle, by summing 

the contributions from all possible ray paths between source and receiver. Such a ray path from 

source to receiver is an eigenray.  

Eigenrays can be found numerically by tracing a ray with some starting angle until it gets to the 

same range as the receiver. It will usually not pass through the receiver. The starting angle is then 

varied until the ray passes within some acceptably small distance of the receiver. 

There are usually many eigenrays. For a given number of bottom turning points there are, in general, 

four eigenrays. This occurs because a ray can leave the source travelling upwards or downwards and 

can arrive at the receiver travelling upwards or downwards giving four combinations. 

 

  

 

S 
R 

 
  The four eigenrays with one lower turning point. 

 

Two of the eigenrays have one upper turning point, one has zero and one has two.  

In general, for the four eigenrays with n lower turning points, two will have n upper turning points, 

one will have n–1 and one will have n+1. 
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Shadow zones 

 

  

z

c(z)

shadow

 
 

A shadow zone is a region where sound cannot reach along a ray path. In the situation shown the ray 

which grazes the surface forms a boundary between the insonified region and the acoustic shadow. 

Sharp shadows are impossible. There is always diffraction into the shadow region and ray theory 

must be modified to find the field in shadows. 

 

Focussing 

Focussing of sound occurs when a number of rays pass through the same point. 

 

Caustics 

   

caustic

S

shadow

c(z)

z

 
    

A caustic is formed when a series of rays of slightly different angles form a boundary between a 

shadow zone where the rays do not reach and an insonified zone where there are two rays through 

each point. Each ray touches the caustic in a different place.   

Simple ray formulas must be modified near focusses and caustics to avoid prediction of infinite 

energy. 
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Munk Profile 

The Munk profile is an analytic expression which gives a good approximation to the variation of 

sound speed with depth in deep water. [Munk JASA 55, 220-226 (1974)] 

 

 c(z)  =  c0 [1  +  (e– +  – 1)]       (2.8) 

with   =  2(z – z0)/B and     =  0.0057 

 

The parameter z0 is the depth of the sound speed minimum. The parameter B defines the 'width' of 

the channel. Typical values are z0 = 1.3 km and B = 1.3 km. 

 For z << z0 , approaching the surface, we have  c(z) ≈ c0  e
|

  i.e. exponential increase. 

 For z >> z0 , approaching the bottom, we have  c(z) ≈ c0(1+)  i.e. linear increase. 

 

The Munk profile is very useful for studying general effects in deep water sound propagation. 

Notice that the change of sound speed with depth is more rapid above the minimum than it is below 

the minimum. This is typical of the real ocean. 

 

The figure shows rays paths for rays at various angles emerging from a source on the axis. 

The following features are typical of deep water propagation. 
 

1. The depth scale is exaggerated. Ray angles are much smaller than they look. 

2. The rays are identified by their grazing angle at the axis. 

3. The ray returns to the axis with the same angle as at the start. 

4. The upper loops are much shorter than the lower loops. 

5. There are limiting rays which just graze surface or bottom. 

6. The limiting rays have quite small angles at the axis. The limiting rays typically have angles 

of 15o or less. 
 

Rays which have angles greater than the ray which just grazes the surface are reflected from the 

surface at an equal angle. Such rays are negligible after a few cycles because of scattering at the 

surface and attenuation and scattering on reflection at the bottom. 
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3. ACOUSTIC PLANE WAVES 

Consider acoustic plane waves of wavelength 

  

  

     Z     R 

 

  r 

                         P 

            Y 

        k 

 

      O               X 
 

Let R be an arbitrary point on the wavefront through P. RP is perpendicular to OP. 

k is a vector in the direction of propagation. 

Take the phase at the origin as zero at time t = 0. 

Phase at R (at t = 0)  =  phase at P (at t = 0) 

   =  2  (OP / ) 

   =  (2/) r cos

   =  (2/)  (k.r / k) 

Now define wave number  k  =  2/. 

Phase at R (at t = 0) =  k.r 

=> Phase at r k.r  t 

Pressure at R given by 

  p  =  pm exp[i(k.r  t)]       (3.1) 

or  p  =  pm exp[i(kxx + kyy + kzz  t)] 



The pressure must satisfy the wave equation.  

Substituting 

 








2

x
2 + 


2

y
2 +


2

z
2  pm exp[i(k.r  t)]  =  

1

c
2  


2

t
2  pm exp[i(k.r  t)] 

[(ikx)
2
 + (ikx)

2
 + (ikx)

2
] pm exp[i(k.r  t)]  =  (1/c

2
) (i)

2
 pm exp[i(k.r  t)] 

  kx
2
 + ky

2
 + kz

2
   =  

2
/c

2
 

       k
2
   =  

2
/c

2
 

           k   =   /c        

Hence the phase velocity and wave number are related by   

 c  =  /k          (3.2) 
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Particle displacement and Intensity 

Equation (1.3) gave 

  grad p   =  (
2
d/t

2
) 

=>  (/x,/y,/z) pm exp[i(k.r  t)]   =   (
2
d/t

2
) 

=>  i k pm exp[i(k.r  t)]  =   (i)
2
 d  

=> d   =   i k pm /(
2
) exp[i(k.r  t)]       (3.3) 

or d   =   k (
2
)
1

 pm exp[i(k.r t +/2)]      (3.4) 

Equations (3.4) and (3.5) show that the displacement is in the direction of propagation i.e. sound 

waves are longitudinal waves. They also show that the displacement lags the pressure by a quarter 

of a cycle. 

If A is the displacement amplitude we have 

 A   =   k (
2
)
1

 pm 

=> pm   =   cA          (3.5) 

By considering the energy of oscillation passing through unit area per second the intensity is found 

to be given by 

 I  =  pm
2
 / 2c          (3.6) 



Fluid-fluid boundary conditions 

  

   X  1    c1        p1(x,z,t) 





   2   c2        p2(x,z,t) 

   Z

 

The pressure must be continuous at the boundary. Hence 

 p1(x,0,t)  =  p2(x,0,t)         (3.7) 

The displacement perpendicular to the boundary must be continuous 

 d1z(x,0,t)  =  d2z(x,0,t)         (3.8) 

Now from Eq. (1.3) 

 grad p  =    
2
d/t

2
  =    

2
 d for plane waves 

=> 1/(1
2
)  (p1/z)   =   1/(2

2
)  (p2/z) at boundary 

=> 
1

1
  
p1

z
    =   

1

2
  
p2

z
     at boundary    (3.9) 

 

Summary of boundary conditions 

 Pressure continuous  =>           p1 = p2  

 Displacement continuous =>  
1

1
  
p1

z
    =   

1

2
  
p2

z
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ACOUSTIC PLANE WAVE REFLECTION COEFFICIENTS 

 

Fluid-fluid boundary 

 

 

      

 

   1    c1      ki                  kr  

       X                        i       r 

      

                   t 

        2    c2                 kt 

   
    Z  

 

Assume an incident plane wave produces a reflected plane wave and a transmitted plane wave. 

Wave number vectors ki, kr and kt as shown. Note that we have not assumed r = i.

 ki  =  (k1cosi, 0, k1sini) kr = (k1,cosr, 0, k1sinr)  kt = (k2cost, 0, k2sint) 



Field in medium 1 

 p1  =  pi exp[i(k1cosix + k1siniz  t)]   +   pr exp[i(k1cosrx  k1sinrz  t)] (3.10)

Field in medium 2 

 p2  =  pt exp[i(k2costx + k2sintz  t)]      (3.11) 

 

Now apply boundary conditions.  

Requiring continuity of pressure at z = 0, the time dependence cancels out and we obtain 

  pi exp[i(k1cosix)]  +  pr exp[i(k1cosrx)]   =    pt exp[i(k2costx)]   (3.12) 

This must be true for all x, hence x must cancel out. Thus we require 

 k1cosi     =     k1cosr    =     k2cost       (3.13) 

Hence  

  i   =   r  Law of Reflection     (3.14) 

and since k = /c 

  
cosi

c1
   =   

cost

c2
  Snell's Law      (3.15) 

Substituting (3.13) in (3.12) gives 

 pi + pr  =  pt          (3.16) 
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Continuity of displacement requires 

 
1

1
  
p1

z
    =   

1

2
  
p2

z
          (3.17) 

at z = 0. Inserting p1 and p2 from (3.10) and (3.11) into (3.17) the x and t dependence cancel out 

giving 

 (1/1) [pik1sini  prk1sinr2) ptk2sint 

Putting  k = /c  i = r =1  t = 2 

gives 

 (pi  pr) 2c2 sin1   =   pt 1c1 sin2        

 

Reflection coefficient R 

Define 

 R   =   pr / pi 

Eliminating pt from (3.16) and (3.18) gives 

 R  =  
2c2 sin1   1c1 sin2

2c2 sin1 +  1c1 sin2
        (3.19) 

 

Transmission coefficient T 

Define 

 T  =  pt / pi 

Eliminating pr from (3.16) and (3.18) gives 

 T  =  
22c2 sin1

2c2 sin1 +  1c1 sin2
        (3.20) 

 

 

1. For normal incidence 1 = 90
o
, 2 = 90

o 

  R  =  (2c2  1c1)/(2c2 + 1c1) 

 Hence no reflection if   2c2  =  1c1 

2. Acoustic impedance defined as ratio of pressure to particle velocity for plane waves and is 

 c for the material. Matching impedances gives no reflection. 

3. R > 0 for 2c2  > 1c1  no phase reversal for reflection from higher impedance 

 R < 0 for 2c2  <  1c1  phase reversal for reflection from lower impedance 

 T > 0    no phase change for transmitted wave 

4. 1 > 0
o
  =>  R > 1 always total reflection at grazing incidence 

5. R, T conserve energy 
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6. Water-air interface 

  water  = 1000 kg/m
3
 c = 1500 m/s  c = 1.5  10

6
 kg/m

2
s 

  air  = 1.3 kg/m
3
  c = 340 m/s  c =  440 kg/m

2
s 

 Hence  

 for water > air       2 > 0 R > 1 total reflection, phase reversal 

 for air > water       1 > 0 R > 1  total reflection, no phase reversal 

 

Critical Angle 

The angle 2 is given by Snell's Law  cos2 = (c2/c1) cos1. 

For c2 > c1 we have 2 < 1 giving 2 = 0
o
 for 1 = c the critical angle. 

    

 

 

critical ray 

 

 

 

 

         

           

 



1 c

 

The critical angle c is the value of 1 for which 2 = 0 and is given by 

 cos1 = c1/c2  

 

Total Internal Reflection

If the grazing angle is less than the critical angle i.e  1 < c we can use 

 sin2   =  (1  cos
2
2)

1/2
 

  =  (1  [(c2/c1)cos1]
2)1/2

 

  =  i ( [(c2/c1)cos1]
2
  1)1/2

 

=>        R =  
2c2 sin1   1c1  i ( [(c2/c1)cos1]

2
  1)1/2

2c2 sin1 +  1c1  i ( [(c2/c1)cos1]
2
  1)1/2

    (3.21) 

=>        R =  |R| exp[i] 

where        |R|   =  1  i.e. total reflection 

and   =   2 tan
1







1c1 ( [(c2/c1)cos1]

2
  1)1/2

 2c2 sin1
      (3.22) 

Hence   = 0   for 1 = c 

and  >  for 1 > 0
o
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Therefore for 1 < c there is total reflection with an angle dependent phase change.

Field in medium 2 for total internal reflection 

 

p2  = T pi exp[i(k2costx  + k2sintzt)] 

     = 
22c2sin1

2c2sin1+i1c1([(c2/c1)cos1]
2
1)1/2

  pi exp[i(k1cos1xt)] exp[k2( [(c2/c1)cos1]
2
1)1/2

z] 

            (3.23) 

 

 

 

           

            

 

 

 

 

 

 

        Evanescent  

         wavefronts 

Incident 

wavefronts 

Reflected ray Incident ray 

Reflected 

wavefronts 

 

 

The field in medium 2 travels parallel to the boundary with wavefronts perpendicular to the 

boundary. There is exponential decay of amplitude away from the boundary. Such waves are called 

evanescent waves or inhomogeneous waves and satisfy the wave equation. 
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4. NORMAL MODE PROPAGATION 

 

Standard problem 

 

 

          0        r 

 

   source    zs 

    w   c(z) water

 

       H 

    b    cb         fluid, neglect shear 

       z 
 

 

Wave Equation 

 

The wave equation in cylindrical coordinates for a harmonic source of angular frequency  can be 

written 

 
∂2p

∂r2    +  
1

r
  
∂p

∂r
   + 

∂2p

∂z2   +  
2

c2    p    =   0      (4.1) 

The normal mode solution to the wave equation is referred to as a full wave solution because it 

solves the wave equation exactly. However, the solution is restricted to horizontally stratified 

situations i.e. there is no range dependence such as a sloping bottom. 

The main feature of normal mode solutions is that the wave equation is assumed to be separable. i.e. 

it is assumed that the solution for p(r,z) can be written as a product of functions of r and z as 

 p(r,z)   =   R(r) Z(z)         (4.2) 

this then enables the wave equation to be separated into an equation for R(r) and an equation for 

Z(z). 

The equations are 

 
d2R

dr2    +  
1

r
  
dR

dr
    +  k2 R  =   0          (4.3) 

 
d2Z

dz2     +   
2

c(z)2  Z  –  k2 Z  =   0       (4.4) 

 

Note that this separation is only possible because the sound speed c is a function of depth only. 

 

The parameter k is a separation constant and corresponds physically to the horizontal wave 

number.  

 

Radial solution 

The solution for R is the Hankel function H0
(1)(kr) which is just a power series in kr. It has the 

convenient asymptotic form 

 H0
(1)(kr)  ~  (2/kr)1/2 exp[i(kr   /4)]      (4.5) 

The asymptotic form is very accurate except within one wavelength of the source and is used in 

most applications. 

The amplitude depends on range as r–1/2 which is consistent with energy conservation for 

cylindrical spreading. With assumed time dependence exp(it) the phase dependence exp(ikrt) 

represents a wave travelling in the radial direction with wave number k. Thus Eq. (4.5) represents a 

cylindrical wave propagating outward from the origin. 
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Depth solution 

 

  
d2Z

dz2     +  








 
2

c(z)2  –  k2    Z   =   0       (4.6) 

The function Z(z) oscillates while the term in square brackets is positive.  

[ The equation resembles d2Z/dz2 + a2 Z  =  0 which has solution  Z  =  A sin az ]  

The function decays (or grows) exponentially when the term in square brackets is negative. 

[ The equation resembles d2Z/dz2 –  a2 Z  =  0 which has solution Z  =  A e±az ] 

 

The solution of the depth equation depends on the precise form of the sound speed profile c(z). 

It is convenient to define c0 as the lowest value of sound speed in the water.   

 

 
c(z) 

z 

c 
0 c b 

 H 

 
With the boundary conditions at z = H the depth solutions are of three types 

 

(i) Discrete modes 

There are a finite number of solutions with 

 /cb  <  k  <  /c0 

The energy in these solutions is confined to the water layer. These solutions are sometimes referred 

to as the trapped modes. The energy propagates to great ranges and the signals received at medium 

to large ranges are due entirely to the discrete modes. 

 

(ii) Continuous modes 

The equation has solutions for any k value when 

 0  <  k  <  /cb 

These solutions oscillate everywhere and represent energy which leaks into the bottom. They only 

contribute to the sound field at short ranges and are ignored in most applications. 

 

(iii) Evanescent modes 

The equation has solutions for any k when 

 k2  <  0 

the value of k is pure imaginary and solutions decay rapidly with range. They are ignored in most 

applications. 

 

We will first consider a simple shallow water situation as this contains most of the features of the 

general case without too many complications. 
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Pekeris model 

The Pekeris model provides a good approximation to the shallow water situation. 

The model consists of a homogeneous fluid of depth H over a homogeneous fluid half space and 

provides the simplest realistic model for shallow water acoustics. 

  

c


c


c








c


H

z

c(z)

 
The depth separated equation  

  
d2Z

dz2     +  








 
2

c(z)2   –  k2    Z   =   0       (4.7) 

has solution 

 Z(z)   =  A sin z   z < H      (4.8) 

 2  = 
2

c1
2    –  k2         (4.9) 

 

 Z(z) =  B exp[– z]  z > H       (4.10) 

 2  =  k2  –  
2

c2
2           (4.11) 

 

Boundary conditions 

Our solution must satisfy the physical boundary conditions as follows. 

 

1. The pressure must vanish at the surface because the reflection coefficient at the surface is –1. 

Hence we require 

   p(r,0)  =  0 i.e. Z(0) = 0      (4.12) 

 We have already used this boundary condition in choosing the sine function rather than 

cosine. 

 

2. The pressure must approach zero at great depth otherwise there would be infinite energy. 

 Hence we require 

   p(r,z) –> 0   i.e. Z(z) –> 0  as  z –> ∞     (4.13) 

 We have already used this boundary condition in choosing the decaying exponential in 

(4.10). 

 

3. The pressures must be equal on both sides of the interface. 

   p(r,H+) = p(r,H–) i.e. Z(H+) = Z(H–)     (4.14) 

 

4. The z-component of particle displacements must be equal on both sides of the interface. 

 Since particle displacement is proportional to 
1


  






∂p

∂z
   

 we require 

   Z'(H+)/1  =  Z'(H–)/2        (4.15) 

 where Z' means dZ/dz 



C. T. Tindle Ocean Acoustics 21 

 

Algebra leads to  

 tan 






2

c1
2   –  k2 H     =   –  

2

1
   

2

c1
2  –  k2

k2  –  
2

c2
2

      (4.16) 

 

This is an eigenvalue equation in k. The discrete values of k which satisfy this equation are called 

the normal mode eigenvalues kn where the subscript identifies mode n. In this simple application 

the eigenvalues are obtained from a transcendental equation. In real world problems the eigenvalues 

are obtained by numerical solution of the depth equation (4.7). 

Discrete solutions exist only for  

 


c1
    >   k   >   



c2
  

or in terms of phase velocity /k, solutions exist only for 

 c1   <   


k
    <   c2 

i.e. the normal mode solutions have a phase velocity which lies between the velocity in the water 

and the velocity in the bottom. 

In the present example it is easier to work in terms of  and to solve 

 tan H  =  – 
2

1
  



2

c1
2 – 

2

c2
2 – 2

        (4.17) 

 

The equation must be solved numerically. A graphical solution can be found by drawing a graph of 

both sides and noting the points of intersection. 

 

 

          tanH

 

 

 

 

        

               2              3H 

 

 

                H(1/c1
2
1/c2

2
)
1/2

           RHS 

 
   

Notice that the number of solutions increases as  or H increases. 

 

If the values for  are labelled n the normal modes are 

 

 Un(z)  =  An sin nz      z  <  H   (4.18) 
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  =  An sin nH  exp[n (H – z)]   z  >  H   (4.19) 

It is convenient to normalise the normal modes so that 

 

 


0

∞
   (Un

2 /) dz   =   1         

 

giving 

  An =  






1

1
 






H

2
  –  

sin 2 n H

4 n
   +   

1

2
 
sin2 n H

2 n
 

–1/2

     (4.20) 

 

Example. 

 H  =  50 m  c1  =  1500 m/s  c2  =  1610 m/s 

 1 =  1g/cc  2 =  1.5 g/cc   f    =  120 Hz 

 

    Mode No. Eigenvalues 

 n kn   n   n   /kn 

 1 0.499733  0.054119  0.174404  1508.77 

 2 0.490721  0.108878  0.146599  1536.48 

 3 0.475325  0.163486  0.081352  1586.25 

 

The mode functions can be plotted as follows. 

 
z

H

c
1 c(z)

c
2

 
 

It is conventional to plot each normal mode superimposed on the velocity profile at its phase 

velocity /kn. 

Notice that the n-th normal mode has n maxima as depth changes. The normal modes oscillate in 

the water and decay exponentially in the bottom. 
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Normal modes 

The normal mode functions Un(z) are constructed from the solutions for Z(z). 

They have the properties 

(i) 


0

∞
   (Un

2 /) dz   =   1         (4.21) 

(ii)  

0

∞

 (UnUm/) dz    =   0 n ≠ m       (4.22) 

Therefore the normal modes are orthogonal with weight function 1/(z) where (z) is the constant 

density in each layer. Equation (4.21) leads to 

 

 Un(z)  =  Nn Zn(z)         (4.23) 

 Nn  =  











 




0

∞

 
Zn

2(z)

(z)
  dz 

 –1/2

         (4.24) 

 

General solution 

The solution for a point harmonic source of angular frequency  at r = 0, z = zs is  

 

 p(r,z)  =  i  [Q/(zs)] 
1

N

 Un(zs) Un(z) H0
(1)(knr)     (4.25) 

 

The explicit derivation of this expansion can be obtained from a transform solution of the wave 

equation. 

Using the asymptotic form of the Hankel function the pressure is given by 

 

 p(r,z)  =  [2/r]1/2 [Q/(zs)] ei/4 
1

N

 Un(zs) Un(z)   kn
–1/2 exp(iknr)   (4.26) 

 

Notice that each term of the solution is a product of a function of r and a function of z as was 

assumed during separation of variables. 

 

The amount of each normal mode present is proportional to Un(zs) i.e. the magnitude of the normal 

mode at the depth of the source. This corresponds to physical intuition in that if the source is on the 

maximum of a mode it will strongly excite that mode. Conversely, if the source is on the null of a 

mode then that mode will not be excited at all. 
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Normal Mode Tank Experiment (Tindle et al. J. Acoust. Soc. Am. 81 275-286 (1987)) 

 
        source 

 

     water           hydrophone 

 

    sand 
 

 

The experimental arrangement had a layer of water 10 cm deep and sound speed 1490 m/s over a 

sand bottom of sound speed 1784 m/s. The density ratio was 1.97. 

 

The source was a vertical stack with 7 elements that could generate single modes by matching the 

phase and amplitude of the mode at the corresponding depth. The source waveform measurements 

were made near the source array with elements excited one at a time. The sources transmit a 

smoothed 4 cycle pulse at 80 kHz. 

 

The receiver was a small hydrophone which could be moved continuously as a function of depth. 

 

  
 

Figure 1 shows the source waveforms at the source element depths for the first three modes. 

The vertical lines and the peaks in the waveforms show that for mode 1 all sources are in phase. For 

mode 2 the upper four sources are in phase and the lower three are phase reversed. For mode three 

the upper three sources are in phase, the next two are phase reversed and the lower two are in phase 

with the upper three. 
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Figure 3 shows waveforms recorded at 8 evenly spaced depths at a range of 8.9m. 

The upper left figure is for a point source (the 4th element of the array). Each mode is excited with 

an amplitude proportional to its amplitude at the depth of the source element. 

The waveforms show five successive arrivals corresponding to the first five modes. The amplitude 

of mode two is fairly small because the source is near a null of mode two. 

Successive pulses are increased in length compared to the source pulses because of dispersion. 

The other figures show the waveforms obtained when the source array transmits a single mode. 

Each mode arrives at a different time corresponding to the time in the upper left figure. Each mode 

has the amplitude and phase dependence as a function of depth characteristic of that mode. 

Point source 
Mode 1 

Mode 2 Mode 3 

0.6 
 
 
1.9 
 
 
3.1 
       Depth 
         (cm) 
4.4 
 
  
5.6 
 
  
6.9 
 
  
8.1 
 
 
9.4 

0.6 
 
 
1.9 
 
 
3.1 
       Depth 
         (cm) 
4.4 
 
  
5.6 
 
  
6.9 
 
  
8.1 
 
 
9.4 
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Attenuation 

 

The replacement /c –> /c + i can be used in normal mode theory to include the effects of 

attenuation. 

Since attenuation is usually small we can assume  << /c and use perturbation theory.  

 

We assume the normal modes and eigenvalues are changed slightly 

 

i.e.  Un(z) –> Un(z) + Un(z) and kn –> kn + kn 

 

The normal modes satisfy 

 

 Un"  +  (
2
/c

2
  kn

2
) Un   =  0        (4.27) 

 

where the primes indicate d/dz. Substitution gives 

 

 Un" + (Un)" + [(/c + i)
2
  (kn + kn)

2
] (Un + Un) =  0    (4.28) 

 

Expanding, substituting for Un" from Eq. (4.27) and keeping only first order terms leads to  

 

 (Un)"  +  (
2
/c

2
  kn

2
) Un  +  (2i/c 2knkn) Un  =  0    (4.29) 

 

Now let  

 

 Un(z)  =  
m

 am Um(z)         (4.30) 

 

This is possible because the Un form a complete set.  

Differentiating we have 

 

 (Un)"  =  
m

 am Um"  

 

and substituting using Eq. (4.27) gives 

 

  (Um)"  =   
m

 am (
2
/c

2
  km

2
) Um        (4.31) 



Substitution of Eqs. (4.30) and (4.31) into (4.29) gives 

 

  
m

 am (
2
/c

2
  km

2
) Um  + (

2
/c

2
  kn

2
)  

m

 am Um   +  (2i/c 2knkn) Un  =  0 

 

The terms in 
2
/c

2
 cancel giving 

 

  
m

 am (km
2
  kn

2
) Um    +  (2i/c 2knkn) Un  =  0 
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Multiplying by Un/ and integrating (0,) allows us to use mode orthogonality as in Eq. (4.22) and 

mode normalisation as in Eq. (4.21) to obtain



 kn  =  
i

kn
  




0

∞

 
(z)

(z)c(z)
 Un

2(z) dz        (4.32)

Since kn is pure imaginary we set kn = in to obtain 

 

 n  =  


kn
  




0

∞

 
(z)

(z)c(z)
 Un

2(z) dz        (4.33) 

 

The term exp(iknr) in the mode sum becomes exp(iknr) exp(-nr) so that each mode is attenuated at 

its own rate. 

 

For shallow water modes the attenuation in the bottom dominates. 

 

 

 

 

 

 

 

 

 

 

 

attenuation as 

modes propagate 

 
 

Mode amplitude decays with range as the bottom absorbs energy. Usually higher modes decay more 

rapidly. 

 

For the case of the Pekeris two fluid model as given above the attenuation is zero in the water so the 

integration is over the range (H,∞) and the sound speed c2 is constant. The result is 

 

 n  =  


c2kn
  

12n
2

nH[(2n)2 + (1n)2] + 12(n
2 + n

2)
     (4.34) 
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5. NORMAL MODES AND BROADBAND PROPAGATION 

 

For time dependent signals the source will have a frequency spectrum S() and the full time 

dependent solution becomes 

 p(r,z,t)  =  i  [Q/(zs)] 






 S 
1

N

 Un(zs) Un(z)   H0
(1)(knr)  e-it d  

 

Note that the summation over modes needs to be inside the integral over frequency because the 

number N of discrete modes is a function of frequency. 

 

Inserting the asymptotic form of the Hankel function gives 

 

   p(r,z,t)  =  [2/r]1/2 [Q/(zs)] ei/4 






 S 
1

N

 Un(zs) Un(z)    kn
–1/2 exp[i(knrt)] d 
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Wave packets and dispersion 

Consider an acoustic field given by 

 p  =  p0 exp[i(kx  t)]        (5.3) 

This represents a succession of infinite plane waves travelling in the X direction with no start and 

no finish. 

Points of constant phase travel with phase velocity v given by 

 v  =  /k.  

A pulse or wave packet may be constructed by combining waves of different frequencies 

 p(x,t)  =  

−



G()  exp[i(kx  t)] d        

If G() is non zero only near 0 then only values near 0 contribute to the integral. 

Let 

 (x,t,)  =  kx  t         (5.5) 

giving 

 p(x,t)  =  

−



G()  exp(i)d        

If  varies rapidly for some x,t value then p > 0 because the integrand oscillates rapidly. Hence p is 

localised to regions where  is slowly varying i.e. / is small or zero. 

Putting 

 /|
0

 =  0 

=> [dk/d|
0

 ] x  t  =  0. 

We deduce that p(x,t)  0 unless 

 x/t    d/dk |
0

  

Hence the pulse or group moves at the group velocity u given by 

 u  =  d/dk          (5.7) 

If k() = /c with c constant we have 

 p(x,t)  =   

−



G()  exp[i(/c)(x  ct)] d 

which is constant for a given value of xct i.e. the pulse travels undistorted at speed c. 

For other k() the pulse changes shape as it travels and there is pulse spreading or dispersion. 

 

Material dispersion (also called intrinsic dispersion) 

This occurs if the propagation speed of a plane wave is a function of frequency e.g. optics. 

There is no material dispersion in acoustics or seismics. 

 

Geometric dispersion 

Waveguides give rise to geometric dispersion because the component of the propagation vector 

along the waveguide is a function of frequency. Thus a pulse travelling along the waveguide will 

change shape as it travels. 
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Pekeris model dispersion curves 

The phase velocity vn = /kn and group velocity un = d/dkn can be plotted as a function of  to 

give the dispersion curves. 

 

 

c 
 

c 
 

u 
 

v 
 v 

 

u 
 

u 
 

v 
 

      
 

  
The group velocity curves provide the main physical interest because pulses travel at the group 

velocity.  

The group velocity curves can be used to anticipate the structure of a received signal. 

 Each mode has a lower cutoff frequency below which it does not propagate.  

 If a transmitted signal contains all frequencies the lowest frequency in each mode arrives 

 first because it has group velocity c2.  

 Then the frequency in each mode rises steadily until the components at velocity c1 arrive.  

 Next there are both high and low frequency components in each mode, with the frequency of 

 the high frequency components dropping rapidly. 

 Each group velocity curve has a minimum. Hence for each mode there is a frequency which 

 travels slowest and arrives last. 

 

Calculation of group velocity 

It is difficult to find d/dkn analytically, except in trivial problems, and it is impossible if the 

velocity profile, c(z), is given by a set of numerical values. 

It is easier to find the group velocity from the finite differential ratio /kn by finding the  

eigenvalues at two nearby values of frequency. 

 

Ground wave or Head wave 

The first arrival predicted by the group velocity curves is often called the ground wave since it has 

apparently travelled at speed c2. Its path is assumed to be 

 

 

 S 
R 

 c  c 

 
This arrival is usually called the head wave in seismology. It travels down to the boundary at the 

critical angle, along the interface at the speed of the lower medium and up to the receiver at the 

critical angle. The waves in the lower medium continually radiate up into the upper medium. 
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A Model Experiment 

 

Tolstoy and Clay p 117 describe a model experiment with a source pulse of the form 

 

 p(t)  =  A t e
t

 sin(ft) 

 

with  = 1.8  10
6
 s
1

  and  f = 5.6  10
5
 s
1

. 
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
The source pulse is effectively a one cycle pulse at 560 kHz. It has a wide bandwidth with most of 

the energy in the 280 - 840 kHz band. 

          
Figure 2 shows the waveforms calculated individually for each mode. 

 

Each waveform begins with a low frequency signal and the frequency gradually increases. Then a 

high frequency signal arrives and the two combine. The frequencies continue changing smoothly to 

give a final arrival at a well defined frequency. The initial and final frequencies are different for 

each mode as expected from the group velocity curves. 

Fig. 1 

Fig. 2 
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Figure 3 shows the combined signal and compares it with an experimental waveform for a model 

experiment with a 2 mm layer of kerosene over salty water. 

 

    
 

Figure 4 shows a frequency time analysis for the signal from an explosive source in shallow water. 

The three dark bands beginning at high frequency and ending at low frequency correspond to the 

first three modes. 

Each mode signal begins at high frequency and ends at a well defined low cutoff frequency. Cutoff 

frequency increases with mode number. 

Higher modes have lower group velocity and travel slower (in shallow water). 

 

Fig. 3 

Fig. 4 



C. T. Tindle Ocean Acoustics 34 

Mode extraction 

 

For a narrow band signal the normal mode functions Un(z) are approximately independent of 

frequency and we can write  

 

 p(r,z,t)  ≈  
1

N

 An Un(z)          (5.8) 

 

where 

 

 An(r,t)  ≈  [Q/(zs)] ei/4 [2/knr]1/2 Un(zs)  S exp(iknr)  e-it d   (5.9)

 

This parameter An(r,t) is the signal associated with each mode and represents a pulse travelling at 

the mode group velocity. 

 

An experimental waveform for An can be extracted from a set of data by multiplying p(r,z,t) on the 

left by Um(z)/(z) and integrating over depth. This gives 

 

      [Um(z)/(z)] p(r,z,t)  dz  =  [Um(z)/(z)] 
1

N

 An(r,t) Un(z)  dz  =  Am(r,t)     (5.10) 

 

where the last step follows because the modes are orthogonal. 

 

In practice we sample the field p(r,z,t) at a finite number J of depths zj and the integration is 

approximated by 

 

 
1

J

 [Um(zj)/] p(r,zj,t)      [Um(z)/] p(r,z,t)  dz       Am(r,t)   (5.11) 

 

This weighted summation of the signals measured at a series of depths enables the waveform 

associated with each mode to be extracted provided the number of depth samples is greater than the 

number of modes. The use of the Um(zj) as weighting functions in the summation gives quite good 

separation of the mode signals. A better weighting function using a pseudo inverse matrix [Tindle et 

al.(1978)] can give almost perfect separation of the mode signals.  
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Hauraki Gulf Experiment (Tindle et al. J. Acoust. Soc. Am. 64, 1178-1185 (1978)) 

 

If a narrow bandwidth pulse is transmitted, each normal mode will have its own group velocity. 

Therefore each mode travels at its own speed and can arrive separated from the other modes. 

  

Source

Hydrophones
 

 

In a shallow water normal mode experiment a sound source transmits to a vertical array of 

hydrophones. The received signals are transmitted back to the ship and recorded.  

 

 

 
 

The source transmitted a smoothed four cycle cosine pulse at 120 Hz as shown. 

The waveforms on the left were taken on a vertical string of hydrophones, evenly spaced in 50 m 

water depth at a range of 5 km. 

The hydrophone waveforms show the signals received at the various depths as indicated. There are 

three pulses arriving on most hydrophones. 

The first pulse arrival has the depth dependence characteristic of mode 1. It is small near the surface 

and bottom and larger in the middle of the water column. The first pulse arrival has the same phase 

at all depths, as can be verified by placing a ruler on the figure. 
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The second arrival has the depth dependence characteristic of mode 2. It has a null near the middle 

of the water column and has very small amplitude at 28 m. It has maxima at about 1/4 and 3/4 of the 

water depth giving large amplitude at 14 m and 42 m. There is a phase reversal at the null and the 

pulses above the null have the opposite phase from those below the null. 

The third arrival is less distinct due to attenuation but has the depth dependence of mode three. 

Since the modes have their own value of group velocity they arrive at different times as the results 

show. The total travel time from the source was about 3.4 seconds. 

The results of mode extraction applied to the experimental hydrophone waveforms is shown as the 

mode waveforms on the right. Summation of the hydrophone signals with the appropriate 

weightings enhances each mode in turn.  

 

Theoretical waveforms 

 

 

The left figure shows theoretical waveforms corresponding to the Hauraki Gulf experiments. When 

compared with the experimental waveforms there is excellent agreement of relative arrival times, 

pulse shapes and mode shapes as a function of depth. The relative mode amplitudes do not agree 

because attenuation was not included in the theory. The ratio of amplitudes of theory and 

experiment was used to measure attenuation. 

Mode extraction leads to the waveforms on the right. Each mode signal is a replica of the source 

signal except that there is more dispersion for the higher modes and the pulse becomes lengthened. 

There is good agreement of waveform shapes and arrival times with the experimental results. 

Amplitudes do not agree because attenuation has not been included. 
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Normal modes in deep water 

In deep water the sound speed profile c(z) has a minimum c0 at some depth z0. 

The depth equation can be written 

 

 
d2Z

dz2     +  2 Z   =   0         (5.16) 

 

where  

 2   =   








 
2

c(z)2   –  k2          (5.17) 

 

As before the solution oscillates when 2 is positive and decays exponentially when 2 is negative. 

However, now the transition between them occurs when 2 = 0 and this can occur within the water 

at some depth zt. This is referred to as a the turning point for wave number k as the solution changes 

smoothly between oscillating and exponential behaviour at this point. 

The low order modes have two turning points within the water column. The first three modes for a 

very low frequency are shown in the diagram. They are plotted at their phase velocity.  

  

    

c(z)

z

 
The eigenvalues for these modes are not determined by the boundary conditions. Instead they are 

determined because the exponential and oscillatory solutions must match smoothly at the turning 

points. Smooth matching means that both value and derivative must be continuous. For an arbitrary 

value of k the solutions will usually not match. The value of k is adjusted until a match occurs. 

    As before the n-th mode function has n maxima and its own group velocity. 

    Each successive mode has turning points further apart in the water column. 

    Note that the turning points for a given mode are at the same value of sound speed. 

The diagram shows the first three modes at a very low frequency. At a somewhat higher frequency 

the low order modes shown would move much closer to the sound speed minimum and therefore 

would have much smaller vertical extent. 
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6. NORMAL MODES AND RAYS 

 

Modes and Rays 

 

The correspondence between modes and rays can be obtained by considering two sets of wave 

fronts each making an angle  with the horizontal. 
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The wave fronts in the figure mark the boundaries between crests  (marked +)  and  troughs  

(marked –).  

Where wavefronts overlap the two sets of wavefronts  

    either  cancel when a crest of one set of waves matches a trough of the other set 

 or reinforce to produce a larger crest or trough. 

As time progresses the wavefronts move in the direction of the rays but the whole pattern appears to 

move to the right. Therefore the depth at which the cancellation takes place stays constant. Thus 

there are nodes at well defined depths. 

At depths between the nulls the sound field oscillates between strong maxima and minima. These 

depths are antinodes. 

This vertical distribution of energy corresponds to a normal mode pattern as indicated at the right of 

the figure. 

 

Only wavefronts at certain angles will reinforce because the boundary conditions must also be 

satisfied. At the surface there must always be a zero of pressure. At the bottom the incident and 

reflected waves will have a definite phase relationship.  

In order to persist the wave pattern must have wavefronts which stay in step after successive 

reflections at surface and bottom. If they are not in step, successive reflections will lead to eventual 

cancellation. 

Thus wavefronts at certain angles reinforce and form the normal modes. 
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Equivalent rays 

 

The rays and normal modes can be related by the requirement that they must have the same vertical 

separation of nodes. 

The diagram shows three wavefronts. The two upgoing wavefronts through A and B are 

perpendicular to the upgoing ray AD. There is one downgoing wavefront AB. 

For simplicity we consider the two upgoing wavefronts to be crests and the downgoing wavefront to 

be a trough. This means that points A and B are both nulls and the vertical separation of nodes is the 

distance BC. 

 

  





B

A C

D

Rays

Wavefronts

 
Using geometry we have 

 AD  =   
AD

AB
   =  sin 2  

BC

AB
   =  cos      =>    BC  =  



2 sin
  

We also have  

   =  
c

f
    =   

2c


  

Therefore the vertical separation of the nodes of the wavefront pattern is 
c

sin
  

Since the normal mode function is sin(nz) the vertical distance between nulls of the normal mode 

pattern is 


n
   . 

Equating these we find 

 n  =  


c
   sin           

and using 

 n  =  








 
2

c2   –  kn
2  

1/2
         (6.2) 

we have  

 kn  =  


c
   cos           

Therefore we can draw the following triangle 
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 

 /c 
 
n 

k n 

 
This triangle is very useful in relating rays and modes since kn and n are mode quantities and  is a 

ray quantity. 

The angle  is called the angle of the equivalent ray. 

 

Critical angle 

In the Pekeris problem the critical angle c at the bottom has 

 cos c  =  c1/ c2         (6.4) 

Discrete normal modes exist for  

 /c1  >  kn  >  /c2  

i.e. mode cut off is given by  

 kn  =  


c2
      

but using (6.3) this is equivalent to   


c1
 cos   =  



c2
  which simplifies to  cos = c1/c2

Comparing this with Eq. (6.4) shows that the cutoff for discrete modes corresponds to the critical 

angle for rays. Therefore the energy in the discrete modes corresponds to rays which are totally 

reflected at the bottom. We conclude that discrete modes correspond to totally reflected rays. 

 

Discrete modes are often called trapped modes because their energy is trapped in the water layer. 

Continuous modes correspond to rays beyond the critical angle which are refracted into the bottom. 

 

Turning points in deep water 

Even though we have derived the relationship (6.3) for constant c, it holds for variable c(z) also. 

In Snell's law cos/c was constant. Therefore, using (6.3), kn is constant and corresponds to the 

eigenvalue of the mode. 

i.e. kn stays constant while  and n  vary. 

In particular the ray becomes horizontal for  = 0 and this corresponds to n = 0 which we showed 

earlier was the turning point of the mode function. 

 

   

 

 
Thus the turning points of the mode and the equivalent ray occur at the same depths! 
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WKB solutions 
 

The development of the WKB (named after Wentzel, Kramers and Brioullin) expression for the 

normal modes gives an approximate but useful phase and amplitude representation of normal modes 

which will enable us to make a number of connections between normal modes and rays. 

 

The observation that deep water normal modes are functions which oscillate as a function of depth 

suggests that it should be possible to write 

 

 U(z)  =  A(z) sin[(z)]         (6.5) 

 

so that the mode function is replaced by an amplitude function and a phase function. We expect the 

amplitude function A(z) to be slowly varying with no zeros and we expect the zeros to be given 

when the phase function (z) passes through multiples of . 

 

The depth equation can be written 

 

 d
2
Z/dz

2
  +  n

2 
Z  =  0   where n


 = 

2
/c

2
(z)  kn

2
    (6.6) 

 

We seek a solution of the form 

 

 Z(z)  =  A(z) exp[i(z)]        (6.7)

 

with A(z) a smooth function of position with no zeros. We expect the zeros of Re(Z) to be given by 

(z) = (n + 
1
/2). 

 

Substitution and separation of real and imaginary parts gives 

 

 d
2
A/dz

2
  [(d/dz)

2
  n

2
] A   =   0       (6.8) 

 

 A d
2
/dz

2
  +  2 (dA/dz) (d/dz)  =   0       (6.9) 

 

Equation (6.9) has solution 

 

 A(z)  =  A0 (d/dz)
1/2

         (6.10) 

 

with A0 constant. 

 

Now assume d
2
A/dz

2
 << n

2
 A. This is equivalent to assuming that A(z) is slowly varying. 

 

Equation (6.8) becomes 

 

 d/dz  =   n           (6.11) 

 

=> (z)  =   

a

z

 n(z') dz'  +  0        (6.12) 

Hence combining Eqs. (6.10)-(6.12) 
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 Z(z)  =  A0 n
1/2

 exp(i[ 

a

z

 n(z') dz'  +  0])      (6.13) 

or 

 Z(z)  =   N [(z)]–1/2 sin













a

z

 (z') dz'+ 0         (6.14) 

 

where N is the normalization and a and 0 are constants to be determined.  

 

If a is taken as the upper turning point, detailed consideration of the turning points shows 0 = ± /4. 

 

The WKB solution then becomes 

 Z(z) =   N [(z)]–1/2 sin













a

z

 (z') dz' + /4        (6.15) 

 

 

 

WKB normal modes 
 

The WKB solution in Eq. (6.15) will be a normal mode solution provided it can be made to satisfy 

the boundary conditions at the other turning point. 

 

The solution corresponding to (6.15) which is valid at the other turning point (z = b) is 

 Z(z) =   N'[(z)]–1/2 sin













b

z

 (z') dz'  /4         (6.16) 

 

 and the two solutions (6.15) and (6.16) will be identical provided 

 

a

b

 (z') dz'   =  (n – 
1

2 )         (6.17) 

i.e. 

 

a

b

 2/c(z')2 – kn
2 dz'   =  (n – 

1

2 )        (6.18) 

Equation (6.18) is therefore an eigenvalue condition for the normal modes, where n is the mode 

number and kn is the eigenvalue. [This is equivalent to the Bohr-Sommerfeld approximation to the 

eigenvalues in Quantum Mechanics.] 

 

The WKB normal mode solution is therefore given by Eq. (6.15) with the eigenvalue given by Eq. 

(6.18).
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Example 

Consider  d
2
Z/dz

2
 + 

2
Z  =  0  where  


(z)


/c

2
(z)  k

2
   

 

Let  
    

c
2
(z) = c0

2
/(1  gz) 

 

giving  
2
(z) =  (

2
/c0

2
) [1 gz]  k

2
   

 

which is of the form 
2
(z) = 


(a  z) 

 

Putting  x = (a  z)  and U(x) =  
2
Z

 

gives  d
2
U/dx

2
   x U  =  0

 

The solution is the Airy function Ai(x) 
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Airy function Ai(-x) and its WKB approximation

x

 
Note   

1. The turning point is at x = 0    i.e  (z) = 0

 exponential decay for x > 0    i.e. 
2
 > 0 

 sinusoidal behaviour for x < 0  i.e. 
2
 < 0

  

2. The wavelength of oscillations decreases as 
2
 increases. 

 

3 The amplitude decreases as 
2
 increases. It is large near  = 0.  

 The WKB approximation has infinite amplitude at  = 0. The phase remains well behaved.



C. T. Tindle Ocean Acoustics 44 

Interference of modes 
 

As normal modes propagate they will sometimes interfere to produce maxima and sometimes 

minima. The WKB approximation to the mode functions expresses the modes in terms of their 

amplitude and phase and facilitates the study of mode interference. 

Consider the normal mode sum 

 

 p(r,z)   =   (  )  
1

N

 Un(zs) Un(z) exp(iknr)       (6.19) 

  

where the empty bracket includes unimportant slowly varying parameters.  

Consider terms in n and n+1. Their combined contribution can be written 

 

 exp(iknr)



Un(zs)Un(z) + Un+1(zs)Un+1(z)e

i(kn+1–kn)r 
     (6.20) 

 

This term is obviously cyclic as the range changes, with a 'mode interference wavelength'  given 

by 

 

 (kn+1–kn)  =  2         (6.21) 

 

which can be written using a finite differential as 

 

   =  
2

kn/n
           (6.22) 

 

Since adjacent modes obviously reinforce at the source they also reinforce at multiples of the mode 

interference wavelength . 

 

This idea of mode reinforcement can be extended throughout the entire water depth as follows. 

Using the WKB approximation for the normal modes and the identity 

 

 sin    =   
ei – e–i

2i
          (6.23) 

 

we can write the sin function as the difference of exponentials and obtain 

 

 p(r,z)=( )
1

N

 











expi[

a

zs

dz'+/4]–exp[–i(

a

zs

dz'+/4)]











expi[

a

z

dz'+/4]–exp[–i(

a

z

dz'+/4)]    

 

    exp(iknr)        (6.24) 

 

Now consider the phase  of the first term of this expansion. We have 

   =  

a

zs

dz'  + 

a

z

dz'  + knr + /2       (6.25) 
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with the explicit form for  this can be written 

  =  

zs~

z

( )2/c(z')2 – kn
2

1/2
  dz'  +  knr  +  /2      (6.26) 

where the notation zs~ means the sum of the integrals from zs to z via the appropriate turning points, 

one upper turning point in this case. 

 

Adjacent terms of the integral (i.e. terms in n and n+1) will be in phase when a change from n to 

n+1 produces a phase change of a multiple of 2. This will occur when  

 

 


n
   =  2m where m is an integer.       (6.27) 

 

Taking a finite derivative of (6.26) with respect to n gives 

 

 /n  =   

zs~

z

 (
1
/2)( )2/c(z')2 – kn

2
1/2

 2kn (kn /n)dz'  +  (kn/n) r 

 

Setting this equal to 2m and rearranging we find 

 r   =   




zs~

z

 








c2(z') kn
2 – 1

–1/2
  dz'   +   

2m

kn/n
       (6.28)  

Now consider the ray path equation for a ray which has travelled from source to receiver with m 

complete cycles and one extra upper turning point. The ray path equation is 

 r   =   




zs~

z

 






c0

2

c(z')2 cos20
 – 1

–1/2
  dz'   +   mD      (6.29) 

where D is the cycle distance. 

 

Comparing equations (6.28) and 6.29) we see that they will be identical provided 

 

 kn = 


c0
  cos0          (6.30) 

and 

 D  =   
2

kn/n
           (6.31) 

 

The first of these requirements is well known and relates the horizontal wave number of the mode to 

the angle of the equivalent ray. The second shows that the ray cycle distance is the same as the mode 

interference wavelength discussed above. 

 

We conclude that the interference of the modes has produced an interference maximum which 

follows the ray path of the equivalent ray. 
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The four possible sign combinations in the terms of (6.33) correspond to the four possible eigenrays 

for a given number of complete cycles. 

 

 

  

          zs     zs             zs       zs 

 

           z              z                   z         z 

 

 

 I      II         III          IV 

 

Equation (6.34) corresponds to case III i.e  

a

zs

  dz + 

a

z

  dz . 

If the field due to a group of adjacent modes is calculated it has well defined interference maxima. 

These maxima are plotted as the dots in the figure [from Tindle and Guthrie, J. Sound Vib. (1974)]. 

The solid line is a ray trace for the equivalent ray for the central mode of the group. 

 

It is clear that adjacent modes interfere to produce energy which follows the ray path of the 

equivalent ray. 
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Modes and Equivalent Rays 

The example below shows a sound speed which drops linearly from 1545 m/s at the surface to 1490 

at mid water depth and then is constant in the lower half of the water column. The frequency 

considered gives 6 trapped modes. 

 

 1490                 1545   Sound speed (m/s) 1610 

    0 

 

 

 

 

  Depth (m) 

 

 

 

   500 

 

 

 

 

 

 

 

 

 

  1000 

 

 



Equivalent rays for modes 1 to 6. 

Mode eigenvalues and equivalent ray grazing angles are related by  kn = [/c(z)] cos(z). 

The lowest mode has lowest phase velocity and highest k, hence lowest grazing angle. 

 

 

 

 

 

 

         6 

 

              1 

 

 

A source in the lower half will excite all modes (unless it is on a null). 

Mode 3 will arrive first because the equivalent ray spends longer in the higher speed layer and has 

the longest cycle distance. 

Arrival order will probably be 3, 2, 1, 4, 5, 6 i.e. order of decreasing cycle distances. 

A receiver near the surface will not receive modes 1-2. 
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7.  BEAM DISPLACEMENT 

 

Beam Displacement on Reflection (Brekhovskikh Ch 14) 

 

Consider a downgoing plane wave incident on the bottom. The pressure can be represented by 

 

 pinc  =  A exp[i(kr +z)]       

 

where k  =  (/c) cos  and   =  (/c) sin  

    

and  is the grazing angle of the ray. 

 

An upgoing reflected wave is given by 

 

  prefl  =  B exp[i(kr  z)]       

 

where B is to be determined.

 

At the bottom at z = H we have 

 

 pinc  =  A exp[i(kr + H)]        

 

The reflected wave at the bottom is the incident wave multiplied by the reflection coefficient R(k) 

giving 

 

 prefl  =  A R(k) exp(2iH) exp[i(kr  z)]     

 

Now construct a beam by taking a narrow range of angles 

 

 pinc  =   A(k) exp[i(kr + z)] dk      

 

with A(k) strongly peaked at k = k0. 

 

 prefl  =     A(k) R(k) exp(2iH) exp[i(kr  z)] dk     

 

Now if R(k) = |R(k)| exp[i(k)] and |R(k)| is slowly varying we can approximate (k) as 

 

 (k)    (k0) + (k  k0) (d/dk)       

 

At the bottom 

 

 pinc(r,H)  =   A(k) exp[i(kr+H)] dk       (7.1) 

 

   prefl(r,H) =  A(k) |R(k0)| exp(i[(k0)+(kk0)(d/dk)]) exp(2iH) exp[i(krH)] dk 

 

=>  prefl(r,H) = R(k0) exp[ik0(d/dk)]  A(k) exp(i[k(r+d/dk)+H]) dk   (7.2) 
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Comparing (7.1) and (7.2) shows the reflected beam is the incident beam multiplied by the 

reflection coefficient R(k0), phase shifted by k0(d/dk) and shifted along the boundary by the beam 

displacement  where 

 

   =   (d/dk)          (7.3)

 

 

The beam displacement arises when the phase change on reflection is a function of angle of 

incidence and can be seen geometrically in the diagram. 

 

 

Source 

Usual  
image  
source Apparent image source 

Phase shift   
depends on  
angle 

Beam displacement     

 
 

 

The source emits circular wavefronts as shown. 

 

The usual reflected wavefronts are shown as dashed curves and appear to come from the usual 

image source. The usual image source is at the source position reflected in the interface. 

 

Because the phase change on reflection is a function of angle the reflected wavefronts are displaced 

from the usual wavefronts and are shown as solid curves. 

 

The displaced wavefronts have an apparent image source which is displaced as shown from the 

usual image source. 

 

The path of a representative ray is shown. It appears to come from the image source and the ray path 

appears to have a lateral shift at the interface. 

 

Using k  =  (/c) cos  the beam displacement can be found in terms of angles as 

 

   =   – 
d

d
  
 d

 dk
    =   

c

sin
  

d

d
        (7.4) 

 

 



C. T. Tindle Ocean Acoustics 50 

Inclusion of beam displacement is important in ray calculations of the sound field at low frequencies 

in shallow water. Eigenray angles are found using ray paths which include beam displacement. 

 

 

 zs 

          zr 

 

 

  
With inclusion of beam displacement ray calculations agree with normal mode calculations and 

experimental data. [Tindle and Bold, J. Acoust. Soc. Am. 70, 813-819 (1981) and Tindle, 73, 1581-

1586 (1983)] 

The parameters used were 

 c1 = 1508 m/s  c2 = 1605 m/s  2/1 = 1.25  H = 50 m 

 z0 = 6 m  z = 7 m  r = 5100 m  f = 140 Hz 

 

 

   z0 

                    z 

 

 

  

About 50 eigenrays with beam displacement contribute to the signal at the receiver. 

   

Waveform a shows distinct pulses corresponding to modes 1, 2, 3 arriving in order. 

Waveform b is the direct pulse from the receiver. It cancels with the surface reflection as do other 

low grazing angle paths. Mode 1 begins about 2 cycles (140 ms) later. 

Inclusion of beam displacement is necessary to get agreement of mode pulse shapes and travel 

times. Amplitudes to not agree because attenuation has not been included. 
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The waveforms on all six hydrophones are shown in the figure. 

There is good agreement of waveforms between ray and mode theoretical results. Both agree well 

with pulse shapes and arrival times of modes. As before, amplitudes do not agree because 

attenuation has not been included. 
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8.  APPLICATIONS 

 

Tomography 

Underwater acoustics is now used for tomography and large scale measurement of ocean 

parameters. The speed of sound in the ocean depends only on salinity, pressure and temperature. In 

the ocean salinity is constant, pressure is a simple function of depth so sound speed changes are due 

only to temperature changes. 

The upper figure shows the high angle eigenrays for a source and receiver 300 km apart in the sound 

speed profile on the left. There are many eigenrays which cycle close to the sound speed minimum 

but only one is shown. The others have have been omitted for clarity. 

 

  
The lower figure shows the recorded and modelled signal intensity as a function of time.  

The early arrivals correspond to the high angle rays which have maximum depth variation. These 

rays spend the majority of their time at higher speed and arrive first.  

Rays with lower launch angles have less depth variation and cluster around the sound speed 

minimum. They travel more slowly and arrive as a bunch in a final crescendo. 

Long term monitoring of the travel time of the early arrivals can be used for ocean tomography. If a 

patch of warmer water develops near the surface then rays which pass through that patch will arrive 

earlier than before. The travel time variations can be inverted to map ocean temperature changes. 
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Vertical Line Array (VLA) 

A basic tool in underwater acoustics is a vertical line array of hydrophones.  The hydrophones are 

usually uniformly spaced. 

Typical theoretical and experimental deep water receptions are shown in the figure. The data is for a 

range of 1000 km and a source at 250 Hz. The array was 3000 m long with 50 hydrophones at 60 m 

intervals. 

 

    
   

The middle panel is data. The top and bottom panels are modelled using rays and modes 

respectively in the average sound speed profile. 

The early arrivals are discrete and correspond to wavefronts of rays with turning points far from the 

sound speed minimum. The first arrival is an upgoing ray wavefront because it arrives first at the 

deeper hydrophones. 

The later arrivals have many overlapping upwards and downwards rays and form the low order 

normal modes near the sound speed minimum. 
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Wavefronts 

If rays are traced for a fixed time they form a wavefront (also called a time front). 

Turning points in the ray path lead to folds in the wavefront. The ends of the folds are caustics and 

mark the edge of the geometric shadow. The figure shows the ray trace and the time front for a 

source in a Munk sound speed profile. The limiting angle for the ray trace is the angle for rays 

which just graze the surface. The timefront is shown  at a 54.9 s after the wavefront has travelled 

just over 80 km. 

 
If the wavefront passes a vertical array the time order is reversed as in the left diagram below. 

 

  
The right figure above shows the waveforms that would be measured if the source emitted a two 

cycle pulse at 75 Hz. The modelled waveforms include pulses in the geometric shadow. [Tindle 

JASA 112, 464-475 (2002)] 
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