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1 Introduction

Bellhop is a highly efficient ray tracing program, written in Fortran by
Michael Porter as part of the Acoustic Toolbox (available at the website
of the Ocean Acoustic Library). Bellhop is designed in order to perform
two-dimensional acoustic ray tracing for a given sound speed profile c(z) or
a given sound speed field c(r, z), in ocean waveguides with flat or variable
absorbing boundaries. Output options include ray coordinates, travel time,
amplitude, eigenrays, acoustic pressure or transmission loss (either coherent,
incoherent or semi-coherent). The calculation of acoustic pressure is based
on the theory of Gaussian beams [1, 2], which can be applied using different
approximations, namely:

• geometric beams (the default option) [3];

• beams with ray-centered coordinates;

• beams with Cartesian coordinates;

• Gaussian ray bundless approximation [4].
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This description is intended to those working in Ocean Acoustics, interested
in using Bellhop for particular applications. In the sections that will follow
we are going to discuss briefly how to get and install the model, the equations
that it solves, and to illustrate Bellhop capabilities through a set of examples.

2 Theoretical background

Ray tracing requires the solution of the ray equations to determine the ray
coordinates. Amplitude and acoustic pressure requires the solution of the
dynamic ray equations, which are described in detail in [1].

For a system with cylindrical symmetry the ray equations can be written
as [2]

dr

ds
= cξ(s) ,

dξ

ds
= − 1

c2

∂c

∂r
,

dz

ds
= cζ(s) ,

dζ

ds
= − 1

c2

∂c

∂z
,

(1)

where r(s) and z(s) represent the ray coordinates in cylindrical coordinates
and s is the arclenght along the ray; the pair c(s) [ξ(s), ζ(s)] represents the
tangent versor along the ray. Initial conditions for r(s), z(s), ξ(s) and ζ(s)
are

r(0) = rs , z(0) = zs , ξ(0) =
cos θs

cs
, ζ(0) =

sin θs

cs
,

where θs represents the launching angle, (rs, zs) is the source position, and
cs is the sound speed at the source position. The coordinates are sufficient
to obtain the ray travel time:

τ =
∫
Γ

ds

c(s)
, (2)

which is calculated along the curve [r(s), z(s)].

3 Installation

All the Fortran sources of the models included in the Acoustic Toolbox are
provided with a makefile, plus a set of Matlab utilities to display ray coordi-
nates, acoustic pressure or transmission loss. The toolbox has been sucess-
fully tested with the following compilers:

• Intel fortran compiler on linux;
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• gfortran compiler;

• g95 compiler.

With minor modifications of the makefiles (which depend on the particular
Fortran compiler available) typing make clean and make install on the
command line should allow to compile all the models, including Bellhop.
Once the binaries are created the models can be called using the scripts
included in the Toolbox.

4 Numerical issues

Ray and dynamic equations are integrated in Bellhop using a two-step poly-
gon method. For a given output option the model writes ray coordinates for
every launching angle, or calculates progressively travel time data, acoustic
pressure or transmission loss on the grid specified by the user.

5 Input and output files

Bellhop input files (with extension *.env) are required to be compatible
with Kraken (a normal mode model) input files. Thus, some of the param-
eters are not used to perform the ray tracing. The general structure of the
*.env input file used by Bellhop is as follows:

TITLE

Frequency (in Hz)

nmedia (dummy integer < 20)

OPTIONS1

SURFACE-LINE

nmesh sigmas z(nssp) |

z(1) cp(1) / |

z(2) cp(2) / | Sound

. . | Speed

. . | Block

. . |

z(nssp) cp(nssp) / _|_

OPTIONS2 sigmab | Bottom

BOTTOM-LINE _|_ Block

nsources (number of sources) |

source-depth(1) source-depth(nsources) / (in m) |

nrd (number of receivers x depth) | Array
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receiver-depth(1) receiver-depth(nrd) / (in m) | Block

nrr (number of receivers x range) |

receiver-range(1) receiver-range(nrr) / (in km)_|_

OPTIONS3 |

nbeams (number of launching angles) | Output

theta(1) theta(nbeams) (launching angles in degrees) | Block

ray-step zmax rmax _|_

OPTIONS4 epmult rloop isingl | Beam

nimage ibwin component _|_ Block

OPTIONS1 is a five-character string enclosed in single quotes. Here it
follows the description of each character:

• OPTIONS1(1): describes the method of interpolation used by Bellhop to
calculate sound speed and its derivatives along the ray. This character
can correspond to one of the following:

– ’S’: cubic spline interpolation;

– ’C’: C-linear interpolation;

– ’N’: N2-linear interpolation;

– ’A’: analytic interpolation (requires adaptation of the subroutine
SSP and further model recompilation);

– ’Q’: quadratic approximation to the sound speed field (requires
the creation of a *.ssp file containing the field).

• OPTIONS1(2): describes the type of surface and can correspond to one
of the following:

– ’V’: vacuum above surface (the SURFACE-LINE is not required);

– ’R’: perfectly rigid media above surface (the SURFACE-LINE is not
required);

– ’A’: acoustic half-space; SURFACE-LINE should be written as

z-surface cp-surface cs-surface density-surface alpha-surface

/

– ’F’: read a list of reflection coefficients from a *irc file (requires
running first the bounce program).

• OPTIONS1(3): describes attenuation in the bottom (for more details
see [5]) and can correspond to one of the following:
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– ’F’: attenuation units correspond to (dB/m)kHz;

– ’L’: attenuation units correspond to the parameter loss;

– ’M’: attenuation units correspond to dB/m;

– ’N’: attenuation units correspond to Nepers/m;

– ’Q’: attenuation units correspond to Q-factor;

– ’W’: attenuation units correspond to dB/wavelength.

• OPTIONS1(4): optional parameter describing Thorpe volume attenua-
tion in the watercolumn; if set it should correspond to ’T’.

• OPTIONS1(5): optional parameter describing the surface shape; if not
specified the surface is considered flat, if specified it should correspond
to ’*’. In the former case the surface coordinates should be described
in a *.ati file, with the following structure:

interpolation type

npoints

r(1) z(1)

r(2) z(2)

. .

. .

. .

r(npoints) z(npoints)

The parameter interpolation type is a character, equal to ’L’ (for a
linear interpolation of the surface) or ’C’ (for curvilinear interpolation);
surface ranges should be specified in km, surface depths in m.

The parameters nmesh and sigmas are not used by Bellhop, while the
parameter z(nssp) is used to detect the last point of the sound speed profile.
The values of z() and cp() correspond to depth in m and P-wave speed in
m/s.

OPTIONS2 is a two-character string enclosed in single quotes. Here it
follows the description of each character:

• OPTIONS2(1): describes the type of media below the watercolumn and
it can correspond to one of the following:

– ’V’: vacuum below watercolumn (the BOTTOM-LINE is not required);
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– ’R’: rigid below watercolumn (the BOTTOM-LINE is not required);

– ’A’: acoustic half-space; the BOTTOM-LINE should be written as

z-bottom cp-bottom cs-bottom density-bottom alpha-bottom

/

for obvious reasons z-bottom should be equal to z(nssp); cs(bottom)
is ignored, density(bottom) should be specified in g/cm3 and the
units of alpha(bottom) depend on OPTIONS1(3).

– ’F’: read a list of reflection coefficients from a *.brc file (requires
running first the bounce program).

• OPTIONS2(2): describes the shape of the bottom. It can be empty
(which corresponds to a flat bottom) or it can correspond to ’*’. In
the former case the bottom coordinates should be described in a *.bty

file, with the following structure:

interpolation type

npoints

r(1) z(1)

r(2) z(2)

. .

. .

. .

r(npoints) z(npoints)

again interpolation type can be equal to ’L’ or ’C’; bottom ranges
should be specified in km, bottom depths in m.

The following six lines describe the number of sources and correspond-
ing depths (in m), and the number of receivers along range and depth.
Those lines are self-describing.

OPTIONS3 is a five-character string, which describes output options. Here
it follows the description of each character:

• OPTIONS3(1): describes the type of information that should be written
to the output file. It can correspond to

– ’A’: write amplitudes and travel times;

– ’E’: write eigenray coordinates;

– ’R’: write ray coordinates;

– ’C’: write coherent acoustic pressure;
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– ’I’: write incoherent acoustic pressure;

– ’S’: write semi-coherent acoustic pressure.

• OPTIONS3(2): describes the approximation used to calculate acoustic
pressure; it can be empty or it can correspond to one of the following:

– ’G’: use geometric beams (default);

– ’C’: use Cartesian beams;

– ’R’: use ray-centered beams;

– ’B’: use Gaussian beam bundles.

• OPTIONS3(3): selects the inclusion of the beam shift effect; it can be
empty or it can correspond to one of the following:

– ’ ’: do not include beam shift effect (default);

– ’S’: include beam shift effect;

– ’*’: use a source beam pattern file (requires a *.sbp file, similar
to the *.ati and *.bty files, with angles in degrees and ampli-
tudes, instead of ranges and depths).

• OPTIONS3(4): describes the type of source; it can be empty or it can
correspond to one of the following:

– ’R’: point source in cylindrical coordinates (default);

– ’X’: line source in Cartesian coordinates.

• OPTIONS3(5): describes the type of array; it can be empty or it can
correspond to one of the following:

– ’R’: rectilinear receiver grid, receivers at rr( : ) × rd( : ) (default);

– ’I’: irregular grid, receivers at rr( : ) , rd( : ).

The integer nbeams indicates the number of launching angles and the
pair or reals theta(1) and theta(nbeams) determine the first and
last launching angles, in degrees. Launching angles directed towards
the bottom are considered positive, while launching angles directed
towards the surface are considered negative. The parameters ray-step
(in m), zmax (in m) and rmax (in km) define the ray step ds used in the
integration of the ray and dynamic equations, and the “box” dimensions
used to stop the tracing of rays leaving the box.
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When the parameter OPTIONS3 is composed of a single character there
is no need to include more lines in the *.env input file. Otherwise the
model expects two additional lines, which contain additional informa-
tion regarding the beam characteristics. In those two lines one can find
the OPTIONS4 parameter, which is a string composed of two characters.
Here it follows the description of each character:

• OPTIONS4(1): describes the type of beam and it can correspond to one
of the following:

– ’C’: Cerveny type;

– ’F’: space-filling;

– ’M’: minimum width;

– ’W’: WKB beams.

• OPTIONS4(2): describes the type of beam curvature and it can corre-
spond to one of the following:

– ’D’: use curvature doubling;

– ’S’: use standard curvature;

– ’Z’: use zeroing curvature.

The parameters epmult and rloop should be positive reals, while
isingl, nimage and ibwin should be integers. The integer nimage

can take the values 1, 2 or 3. Component is a single character, which is
used only when the acoustic pressure is calculated using ray-centered
coordinates (when OPTIONS3(2) = ’R’); it can be empty (acoustic
pressure will be written to the output file), equal to ’H’ (write the
horizontal component of pressure to the output file) or equal to ’V’

(write the vertical component of pressure to the output file).
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6 Examples

In this section Bellhop capabilities are illustrated by providing the input file
used for different types of calculations. In all cases we are going to consider
a Munk deep water profile, between 0 and 5000 m depth, a 50 Hz source
at 1000 m depth, a ray step of 100 m, and 70 rays between -13◦ and 13◦.
Sound speed at bottom is 1600 m/s, bottom density is 1.8 g/cm3 and bottom
attenuation is 0.8 dB/λ. The environment is illustrated in Fig.1.

D
=

50
00

m

R = 101 km

c = 1600 m/s

ρ = 1,8 g/cm3

α = 0,8 dB/λ

z
s

= 1 km

✹ ◗
z

r
= 1 km

Figure 1: Schematic of the baseline deep water scenario considered in the
examples.
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6.1 A flat waveguide

Let us start with a simple ray trace between 0 and 101 km, using an input
file called flatwav.env. The file looks like this:

’Munk profile/Flat waveguide’

50.0

1

’SVW’

51 0.0 5000.0

0.0 1548.52 /

200.0 1530.29 /

250.0 1526.69 /

400.0 1517.78 /

600.0 1509.49 /

800.0 1504.30 /

1000.0 1501.38 /

1200.0 1500.14 /

1400.0 1500.12 /

1600.0 1501.02 /

1800.0 1502.57 /

2000.0 1504.62 /

2200.0 1507.02 /

2400.0 1509.69 /

2600.0 1512.55 /

2800.0 1515.56 /

3000.0 1518.67 /

3200.0 1521.85 /

3400.0 1525.10 /

3600.0 1528.38 /

3800.0 1531.70 /

4000.0 1535.04 /

4200.0 1538.39 /

4400.0 1541.76 /

4600.0 1545.14 /

4800.0 1548.52 /

5000.0 1551.91 /

’A’ 0.0

5000.0 1600.00 0.0 1.8 .8

1

1000.0 /

1

11



1000.0 /

1

101.0 /

’R’

70

-13.0 13.0 /

100.0 5500.0 102.0

On the command line one invokes Bellhop by writing

whatevershell$ bellhop flatwav <ENTER>

Once Bellhop finishes with calculations one can verify that two files were
created: the first is called flatwav.prt, with general information regarding
the waveguide characteristics, number of launching angles, calculation time,
etc, etc. The second one is called flatwav.ray, and it is an ASCII file
containing ray coordinates. One can plot them using the M-file plotray.m:

>> plotray( ’flatwav’ ) <ENTER>

which generates Fig.1. Changing OPTIONS3(1) = ’R’ to OPTIONS3(1) = ’E’

and proceeding as before one can obtain the eigenrays shown in Fig.2.
The calculation of coherent transmission loss requires some minor modi-

fications to the input file. First, we set OPTIONS3(1) = ’C’; second, let us
consider that transmission loss will be calculated on a rectangular grid with
501×501 points in range and depth. Finally, let us let set nbeams = 0 and let
Bellhop decide how many rays are required. The input file then becomes:

’Munk profile/Flat waveguide’

50.0

1

’SVW’

51 0.0 5000.0

0.0 1548.52 /

200.0 1530.29 /

250.0 1526.69 /

400.0 1517.78 /

600.0 1509.49 /

800.0 1504.30 /

1000.0 1501.38 /

1200.0 1500.14 /

1400.0 1500.12 /

1600.0 1501.02 /
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Figure 2: Rays calculated by Bellhop in a flat deep water waveguide.

1800.0 1502.57 /

2000.0 1504.62 /

2200.0 1507.02 /

2400.0 1509.69 /

2600.0 1512.55 /

2800.0 1515.56 /

3000.0 1518.67 /

3200.0 1521.85 /

3400.0 1525.10 /

3600.0 1528.38 /

3800.0 1531.70 /

4000.0 1535.04 /

4200.0 1538.39 /

4400.0 1541.76 /

4600.0 1545.14 /

4800.0 1548.52 /
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Figure 3: Eigenrays calculated by Bellhop in a flat deep water waveguide.

5000.0 1551.91 /

’A’ 0.0

5000.0 1600.00 0.0 1.8 .0 /

1

1000.0 /

501

0.0 5000.0 /

501

0.0 101.0 /

’C’

0

-14.0 14.0 /

100.0 5500.0 102.0

Now, after running Bellhop one obtains a binary file called flatwav.shd,
which in fact contains the acoustic pressure, calculated coherently. We can
plot the transmission loss using the M-file plotshd.m:
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Figure 4: Coherent transmission loss calculated by Bellhop.

>> plotshd( ’flatwav.shd’ ) <ENTER>

which produces Fig.4.
Finally, let us set OPTIONS3(1) = ’A’ and modify flatwav.env as shown

bellow:

’Munk profile/Flat waveguide’

50.0

1

’SVW’

51 0.0 5000.0

0.0 1548.52 /

200.0 1530.29 /

250.0 1526.69 /

400.0 1517.78 /

600.0 1509.49 /

800.0 1504.30 /

1000.0 1501.38 /

1200.0 1500.14 /

1400.0 1500.12 /
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1600.0 1501.02 /

1800.0 1502.57 /

2000.0 1504.62 /

2200.0 1507.02 /

2400.0 1509.69 /

2600.0 1512.55 /

2800.0 1515.56 /

3000.0 1518.67 /

3200.0 1521.85 /

3400.0 1525.10 /

3600.0 1528.38 /

3800.0 1531.70 /

4000.0 1535.04 /

4200.0 1538.39 /

4400.0 1541.76 /

4600.0 1545.14 /

4800.0 1548.52 /

5000.0 1551.91 /

’A’ 0.0

5000.0 1600.00 0.0 1.8 .0 /

1

1000.0 /

1

1000.0 /

1

101.0 /

’A’

101

-14.0 14.0 /

100.0 5500.0 102.0

After running Bellhop one obtains an ascii file called flatwav.arr, with the
amplitudes and travel times of the rays that arrive at the receiver position (we
indicated only one, but the model is able to calculate travel times and ampli-
tudes at all points of the array indicated in the array block). The data con-
tained in the *.arr file can be read using the M-file read arrivals asc.m:

>> [ a, tau, theta0, thetaR, srefl, brefl, narr, rz ] = ...

read_arrivals_asc( ’flatwav.arr’ ) <ENTER>
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6.2 A Gaussian seamountain (variable bottom)

Let us illustrate ray calculations with Bellhop with a non-flat bottom. We
idealize a seamount using a Gaussian function and define it in a file called
seamount.bty, which looks like this:

’L’

101

0.0000000e+00 4.9971624e+03

1.0100000e+00 4.9963474e+03

2.0200000e+00 4.9953223e+03

3.0300000e+00 4.9940400e+03

4.0400000e+00 4.9924447e+03

5.0500000e+00 4.9904711e+03

. .

. .

. .

9.6960000e+01 4.9924447e+03

9.7970000e+01 4.9940400e+03

9.8980000e+01 4.9953223e+03

9.9990000e+01 4.9963474e+03

1.0100000e+02 4.9971624e+03

Next we make a copy of flatwav.env called seamount.env, and modify it
like shown below:

’Munk profile/Seamount’

50.0

1

’SVW’

51 0.0 5000.0

0.0 1548.52 /

200.0 1530.29 /

250.0 1526.69 /

400.0 1517.78 /

600.0 1509.49 /

800.0 1504.30 /

1000.0 1501.38 /

1200.0 1500.14 /

1400.0 1500.12 /

1600.0 1501.02 /

1800.0 1502.57 /
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2000.0 1504.62 /

2200.0 1507.02 /

2400.0 1509.69 /

2600.0 1512.55 /

2800.0 1515.56 /

3000.0 1518.67 /

3200.0 1521.85 /

3400.0 1525.10 /

3600.0 1528.38 /

3800.0 1531.70 /

4000.0 1535.04 /

4200.0 1538.39 /

4400.0 1541.76 /

4600.0 1545.14 /

4800.0 1548.52 /

5000.0 1551.91 /

’A*’ 0.0

5000.0 1600.00 0.0 1.8 .0 /

1

1000.0 /

1

5000.0 /

1

101.0 /

’R’

71

-14.0 14.0 /

100.0 5500.0 102.0

After running Bellhop we can plot the rays (shown in Fig.5) using plotrays.m.
As in the previous case eigenray calculations or coherent transmission loss
can be obtained by replacing OPTIONS3(1) = ’R’ with OPTIONS3(1) = ’E’

and OPTIONS3(1) = ’C’, respectively. However, keep in mind that the array
block should be written accordingly for every of those options.
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Figure 5: Rays calculated by Bellhop in a deep water waveguide with a
Gaussian seamount.
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6.3 Variable boundaries

Bellhop is not only able to handle a variable bottom, it can also deal si-
multaneously with a variable surface and bottom. Let us illustrate this
by copying the seamount.bty file as varbounds.bty; further, we create a
varbounds.ati file containing the coordinates of a wavy surface, which looks
like this:

’L’

101

0.0000000e+00 1.0000000e+02

1.0100000e+00 1.3090170e+02

2.0200000e+00 1.5877853e+02

3.0300000e+00 1.8090170e+02

4.0400000e+00 1.9510565e+02

5.0500000e+00 2.0000000e+02

6.0600000e+00 1.9510565e+02

7.0700000e+00 1.8090170e+02

8.0800000e+00 1.5877853e+02

. .

. .

. .

9.6960000e+01 4.8943484e+00

9.7970000e+01 1.9098301e+01

9.8980000e+01 4.1221475e+01

9.9990000e+01 6.9098301e+01

1.0100000e+02 1.0000000e+02

Then, seamount.env is copied as varbounds.env, and modified to look like
follows:

’Munk profile/Variable boundaries’

50.0

1

’SVW *’

51 0.0 5000.0

0.0 1548.52 /

200.0 1530.29 /

250.0 1526.69 /

400.0 1517.78 /

600.0 1509.49 /

800.0 1504.30 /
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1000.0 1501.38 /

1200.0 1500.14 /

1400.0 1500.12 /

1600.0 1501.02 /

1800.0 1502.57 /

2000.0 1504.62 /

2200.0 1507.02 /

2400.0 1509.69 /

2600.0 1512.55 /

2800.0 1515.56 /

3000.0 1518.67 /

3200.0 1521.85 /

3400.0 1525.10 /

3600.0 1528.38 /

3800.0 1531.70 /

4000.0 1535.04 /

4200.0 1538.39 /

4400.0 1541.76 /

4600.0 1545.14 /

4800.0 1548.52 /

5000.0 1551.91 /

’A*’ 0.0

5000.0 1600.00 0.0 1.8 .0 /

1

1000.0 /

1

5000.0 /

1

101.0 /

’R’

71

-14.0 14.0 /

100.0 5500.0 102.0

Running Bellhop with this input file we can get Fig.6.
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Figure 6: Rays calculated by Bellhop in a deep water waveguide with a
wavy surface and a Gaussian seamount.
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6.4 Ray trace with a sound speed field

The latest version of Bellhop allows calculations with a sound speed field,
which is going to be illustrated here with a ray calculation only. Let us create
a gulf.env input file, which look like follows:

’Gulf sound speed field’

50.0

1

’QVW’

0 0.0 5000.0

0.0 1536.00 /

200.0 1506.00 /

700.0 1503.00 /

800.0 1508.00 /

1200.0 1508.00 /

1500.0 1497.00 /

2000.0 1500.00 /

3000.0 1512.00 /

4000.0 1528.00 /

5000.0 1545.00 /

’A’ 0.0

5000.00 1800.0 0.0 2.0 0.1 0.0

1 ! NSD

300.0 / ! SD(1:NSD) (m)

101 ! NRD

0.0 5000.0 / ! RD(1:NRD) (m)

1001 ! NR

0.0 200.0 / ! R(1:NR ) (km)

’R’ ! ’R/C/I/S’

51 ! NBeams

-10.0 10.0 / ! ALPHA1,2 (degrees)

0.0 5500.0 201.0 ! STEP (m), ZBOX (m), RBOX (km)

Setting OPTIONS1(1) = ’Q’ allows to take into account a sound speed field,
named gulf.ssp which looks like follows (the syntax is self describing):

8

0.0 12.5 25.0 37.5 50.0 75.0 100.0 125.0

1536 1536 1536 1536 1536 1536 1536 1536

1506 1508.75 1511.5 1514.25 1517 1520 1524 1528

1503 1503 1503 1502.75 1502.5 1502 1502 1502
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1508 1507 1506 1505 1504 1503 1501.5 1500

1508 1506.6 1505 1503.75 1502.5 1500.5 1499 1497

1497 1497 1497 1497 1497 1497 1497 1497

1500 1500 1500 1500 1500 1500 1500 1500

1512 1512 1512 1512 1512 1512 1512 1512

1528 1528 1528 1528 1528 1528 1528 1528

1545 1545 1545 1545 1545 1545 1545 1545

Running Bellhop with this input file allows to get Fig.7.
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Figure 7: Rays calculated by Bellhop with a sound speed field.
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6.5 Near source fields

The examples of the previous sections used Bellhop’s default option to calcu-
late acoustic pressure, namely, geometric beams, which sometimes can be not
sufficiently accurate for particular applications. To this effect Bellhop pro-
vides additional approximations to improve accuracy. Let us illustrate this
through the calculation of coherent transmission loss near the source with
different approximations, so the interference pattern reveals the accuracy of
the approximation used. First, we copy flatwav.env to nearsource.env,
which now looks like follows:

’Munk profile/Near source field’

50.0

1

’SVF’

51 0.0 5000.0

0.0 1548.52 /

200.0 1530.29 /

250.0 1526.69 /

400.0 1517.78 /

600.0 1509.49 /

800.0 1504.30 /

1000.0 1501.38 /

1200.0 1500.14 /

1400.0 1500.12 /

1600.0 1501.02 /

1800.0 1502.57 /

2000.0 1504.62 /

2200.0 1507.02 /

2400.0 1509.69 /

2600.0 1512.55 /

2800.0 1515.56 /

3000.0 1518.67 /

3200.0 1521.85 /

3400.0 1525.10 /

3600.0 1528.38 /

3800.0 1531.70 /

4000.0 1535.04 /

4200.0 1538.39 /

4400.0 1541.76 /

4600.0 1545.14 /

4800.0 1548.52 /
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5000.0 1551.91 /

’A’ 0.0

5000.0 1600.00 0.0 1.8 .8 /

1

1000.0 /

501

0.0 2000.0 /

501

0.2 10.0 /

’C’

201

-25.0 25.0 /

0.0 5500.0 102.0,

’MS’ 1.0 100.0 0,

3 5

We can notice the inclusion of two additional lines (in fact, the beam block).
When using geometric beams, by setting OPTIONS3(1) = ’C’, those lines
are ignored, but we are including them in advance in order to make au-
tomatic the transition to the other approximations. Running Bellhop with
nearsource.env allows us to obtain Fig.8. As shown by the figure the acous-
tic field is strictly confined between the propagating rays and the interfer-
ence pattern of acoustic pressure becomes visible only at a large distance
from the source. Similar results will be obtained using Gaussian beam bun-
dles, when we change OPTIONS3(1) = ’C’ to OPTIONS3(1:2) = ’CB’ in
nearsource.env.

A completely different pattern is revealed when we switch on the calcula-
tion of beams influence using Cartesian coordinates, by setting OPTIONS3(1:2)

= ’CC’ and OPTIONS4(1:2) = ’MS’. As shown in Fig.9 the acoustic field re-
veals an accurate pattern of interference, which now spans over the entire
watercolumn. A similar result, although with minor differences in ampli-
tude, can be obtained using ray centered coordinates (OPTIONS3(1:2) =
’CR’, see Fig.10). However, the structure of the pattern depends on the type
of beam curvature. For instance, setting OPTIONS4(1:2) = ’CZ’ will lead us
to Fig.11.
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Figure 8: Coherent transmission loss calculated by Bellhop near the source
using geometric beams.
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Figure 9: Coherent transmission loss calculated by Bellhop near the source
using Cartesian coordinates to calculate the beams influence. Beam type is
’MS’.

28



Figure 10: Coherent transmission loss calculated by Bellhop near the source
using ray centered coordinates to calculate the beams influence. Beam type
is ’MS’.
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Figure 11: Coherent transmission loss calculated by Bellhop near the source
using Cartesian coordinates to calculate the beams influence. Beam type is
’CZ’.
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6.6 Pressure and pressure components

The recent development of Vertical Sensor Arrays (VSAs) is leading to the
integration of particle velocity calculations in the ray tracing models. Bell-
hop incorporates this feature through the calculation of pressure compo-
nents, which are proportional to the components of particle velocity. Again,
to illustrate this, let us modify nearsource.env as follows:

’Munk profile/Near source field’

50.0

1

’SVF’

51 0.0 5000.0

0.0 1548.52 /

200.0 1530.29 /

250.0 1526.69 /

400.0 1517.78 /

600.0 1509.49 /

800.0 1504.30 /

1000.0 1501.38 /

1200.0 1500.14 /

1400.0 1500.12 /

1600.0 1501.02 /

1800.0 1502.57 /

2000.0 1504.62 /

2200.0 1507.02 /

2400.0 1509.69 /

2600.0 1512.55 /

2800.0 1515.56 /

3000.0 1518.67 /

3200.0 1521.85 /

3400.0 1525.10 /

3600.0 1528.38 /

3800.0 1531.70 /

4000.0 1535.04 /

4200.0 1538.39 /

4400.0 1541.76 /

4600.0 1545.14 /

4800.0 1548.52 /

5000.0 1551.91 /

’A’ 0.0

5000.0 1600.00 0.0 1.8 .8 /
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1

1000.0 /

501

0.0 2000.0 /

501

0.0 30.0 /

’CR’

201

-25.0 25.0 /

100.0 5500.0 102.0,

’MS’ 1.0 100.0 0,

3 5

Again, running Bellhop we can obtain Fig.12. Modifying the last line to

3 5 ’H’

and

3 5 ’V’

allows to obtain Fig.13 and Fig.14, respectively.
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Figure 12: Coherent transmission loss calculated from acoustic pressure using
ray centered coordinates.
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Figure 13: Coherent transmission loss calculated from the horizontal compo-
nent of acoustic pressure.
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Figure 14: Coherent transmission loss calculated from the vertical component
of acoustic pressure.
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7 Concluding remarks

This introduction was written in the hope that it can make easier for a
novice to run some preliminary tests with Bellhop, and also to introduce
an updated manual of the model, since the documentation available is in
fact rather sparse. Certainly, as the model evolves, future updates will be
required. The theoretical aspects of the different approximations are not
covered in detail in this document simply because the material available in
the standard literature is out of date or non-existing. Any contributions
to this matter (and any other contributions of interest regarding Bellhop
applications) will be greatly appreciated.
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