Underwater Acoustics:

Noise and the Effects on Marine Mammals

A Pocket Handbook
3rd Edition

Compiled by
Christine Erbe

www.jasco.com
info@jasco.com

2101 – 4464 Markham St.
Victoria, British Columbia
V8Z 7X8 Canada
Tel: +1.250.483.3300
Fax: +1.250.483.3301
Victoria@jasco.com

301 – 32 Troop Ave.
Dartmouth, Nova Scotia
B3B 1Z1 Canada
Tel: +1.902.405.3336
Fax: +1.902.405.3337
Halifax@jasco.com

Brisbane Technology Park
1 Clunies Ross Court
PO Box 4037, Eight Mile Plains
QLD 4113 Australia
Tel: +61.7.3853.5218
Fax: +61.7.3853.5211
Australia@jasco.com

The Roundel, St Clair’s Farm
Wickham Road
Droxford, Hampshire
SO32 3PW United Kingdom
Tel/Fax: +44.1489.878439
Europe@jasco.com
Part A: Fundamentals of Underwater Acoustics

Units ... 1
Multiplier Prefixes ... 1

1. Terminology .. 2

Sound ... 2
Frequency ... 2
Harmonics ... 2
Wavelength ... 2
Speed .. 2
Particle Velocity .. 2
Pressure ... 3
Acoustic Impedance ... 3
Acoustic Energy .. 4
Acoustic Intensity .. 4
Acoustic Power .. 4
Decibel ... 4
Levels in Air vs. Water ... 5
Some dB Mathematics ... 5
Peak Pressure .. 5
RMS Pressure .. 6
Source Level ... 6
Sound Exposure Level .. 6
Pulse Length ... 7
Duty Cycle ... 7
Fourier Transform .. 7
Power Spectrum Density .. 8
Frequency Bands ... 8
Octave Bands: .. 8
1/3 Octave Bands: ... 8
Percentile Levels .. 10

2. Sound Sources .. 11

a. Natural Sound Sources ... 11
 Ambient Noise Spectra ("Wenz Curves") ... 11
 Beaufort Scale .. 13
b. Anthropogenic Sound Sources ... 14
 Ship Noise ... 14
 Doppler Shift ... 15
 Cavitation .. 15
 Seismic Exploration ... 16

3. Sound Propagation ... 21

a. Overview ... 21
 Wave Equation ... 21
 Harmonic Solution ... 21
 Helmholtz Equation ... 21
 Solutions to the Helmholtz Equation .. 22
b. Sonar Equation .. 22
 One-way Sonar Equation ... 23
 Two-way Sonar Equation ... 23
 Transmission Loss .. 23
 Geometric Spreading ... 24
 Molecular Relaxation (Absorption) Loss .. 25
 Reverberation ... 26
c. RAY Propagation ... 26
 Reflection ... 26
 Refraction .. 26
 Snell’s Law ... 26
 Sound Speed Profiles ... 27
 SOFAR Channel .. 27
 Convergence Zone ... 28
 Shadow Zone ... 28
 Lloyd Mirror Effect .. 29

4. Sound Receivers .. 29

a. Transducers .. 29
 Hydrophones ... 29
 Sensitivity ... 29
 Projectors .. 30
 Near Field (Fresnel Zone) ... 30
 Far Field (Fraunhofer Zone) ... 30
 Directivity Pattern ... 31
 Beamforming .. 31
 Gain ... 31
c. Data Acquisition (DAQ) Boards ... 32
 Resolution .. 32
 Dynamic Range .. 33

Part B: The Effects of Noise on Marine Mammals

(c) JASCO Applied Sciences
5. Marine Mammals of the World ... 33
 Order CETACEA ... 33
 Suborder ODONTOCETI .. 33
 Suborder MYSTICETI .. 40
 Order CARNIVORA .. 41
 Suborder PINNIPEDIA ... 41
 Order SIRENIA .. 44

6. Marine Mammal Acoustics .. 45
 a. Marine Mammal Sounds .. 45
 Odontocete Sounds .. 45
 Mysticete Sounds .. 46
 Pinniped Sounds ... 46
 b. Marine Mammal Hearing .. 47
 Audiograms ... 47

7. Effects of Noise on Marine Mammals 49
 a. Noise Audibility ... 49
 b. Behavioural Responses ... 50
 c. Masking .. 51
 Critical Ratio ... 51
 Critical Band ... 51
 d. Auditory Threshold Shift .. 52
 M-weighting ... 52
 Temporary Threshold Shift (TTS) ... 54
 Permanent Threshold Shift (PTS) .. 54
 e. Non-Auditory Physiological Effects ... 55
 f. Chronic Noise Effects ... 56
 g. Biological Significance ... 56
 h. Mitigation .. 57
 i. Cumulative Stressors .. 57

Part C: Noise Effects on Animals other than Mammals .. 58
8. Fish ... 58
 a. Hearing in Fish .. 58
 b. Behavioural Responses ... 58
 c. Masking .. 59
 d. Hearing Loss .. 59
 e. Physiological Effects .. 59
 f. Chronic Effects & Biological Significance 59

References .. 60
Part A: Fundamentals of Underwater Acoustics

Units: This book uses the International System of Units (SI).

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit Name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>Meter</td>
<td>m</td>
</tr>
<tr>
<td>Mass</td>
<td>Kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>Time</td>
<td>Second</td>
<td>s</td>
</tr>
<tr>
<td>Electric current</td>
<td>Ampere</td>
<td>A</td>
</tr>
<tr>
<td>Temperature</td>
<td>Kelvin</td>
<td>K</td>
</tr>
<tr>
<td>Luminous intensity</td>
<td>Candela</td>
<td>cd</td>
</tr>
<tr>
<td>Amount of substance</td>
<td>Mole</td>
<td>mol</td>
</tr>
</tbody>
</table>

Table 1: SI Units.

Other quantities and their units are derived from these base quantities via quantity equations.

Multiplier Prefixes:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Symbol</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>deci</td>
<td>d</td>
<td>10⁻¹</td>
</tr>
<tr>
<td>centi</td>
<td>c</td>
<td>10⁻²</td>
</tr>
<tr>
<td>milli</td>
<td>m</td>
<td>10⁻³</td>
</tr>
<tr>
<td>micro</td>
<td>µ</td>
<td>10⁻⁶</td>
</tr>
<tr>
<td>nano</td>
<td>n</td>
<td>10⁻⁹</td>
</tr>
<tr>
<td>pico</td>
<td>p</td>
<td>10⁻¹²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Symbol</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>deka</td>
<td>da</td>
<td>10¹</td>
</tr>
<tr>
<td>hecto</td>
<td>h</td>
<td>10²</td>
</tr>
<tr>
<td>kilo</td>
<td>k</td>
<td>10³</td>
</tr>
<tr>
<td>mega</td>
<td>M</td>
<td>10⁶</td>
</tr>
<tr>
<td>giga</td>
<td>G</td>
<td>10⁹</td>
</tr>
<tr>
<td>tera</td>
<td>T</td>
<td>10¹²</td>
</tr>
</tbody>
</table>

Table 2: SI Multiplier Prefixes.

1. Terminology

Sound: • a mechanical wave
• travels through a medium by oscillation of its particles in water and air:
 • travels as longitudinal (pressure, P) wave
 • alternating compressions and rarefactions in rock:
 • travels as both longitudinal and transverse (shear, S) waves
 • P waves travel faster than S waves => P arrive before S
 • P: primary; S: secondary

Frequency: • rate of oscillation
 • number of cycles per second
 • \(f \) [Hz: Hertz]; \(1 \text{ Hz} = 1/\text{s} \)

Harmonics: integer multiples of the fundamental \(f \): \(2f, 3f, 4f, ... \)

Period: • duration of 1 cycle: \(T = 1/f \) [s]

Wavelength: • the spatial distance between two successive ‘peaks’ in a propagating wave: \(\lambda \) [m]

Speed: • the ratio of distance travelled per time
 • \(c = \lambda / T = \lambda x f \) [m/s]
<table>
<thead>
<tr>
<th>Medium</th>
<th>(c_P) [m/s]</th>
<th>(c_S) [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air, 20°C</td>
<td>343</td>
<td></td>
</tr>
<tr>
<td>Fresh water, 25°C</td>
<td>1,497</td>
<td></td>
</tr>
<tr>
<td>Salt water, 25°C, S=33 ppt, D=1m</td>
<td>1,532</td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>800 – 2,200</td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>1,000 – 2,500</td>
<td></td>
</tr>
<tr>
<td>Sandstone</td>
<td>1,400 – 4,300</td>
<td>700 – 2,800</td>
</tr>
<tr>
<td>Granite</td>
<td>5,500 – 5,900</td>
<td>2,800 – 3,000</td>
</tr>
<tr>
<td>Limestone</td>
<td>5,900 – 6,100</td>
<td>2,800 – 3,000</td>
</tr>
</tbody>
</table>

Table 3: P-wave and S-wave speeds of certain Earth materials.

Particle Velocity:
- a vector (having direction): \(u \) [m/s]
- the speed at, and the direction in which the water particles move (vibrate)

Pressure:
- force per area
 - *Hydrostatic* pressure at any given depth in a *static* liquid is the result of the weight of the liquid acting on a unit area at that depth, plus any pressure acting on the surface of the liquid.
 - *Acoustic* pressure is due to a deviation from the ambient hydrostatic pressure caused by a sound wave.
 - measured with a *microphone* in air
 - measured with a *hydrophone* under water
 - \(P \) [1 bar = 10^5 Pa = 10^6 dyn/cm^2]
 - \(\vec{\nu} P = -\rho \frac{\partial u}{\partial t} \) (Newton’s 2\(^{nd}\) Law)
 - \(P = \rho c u \) in the far-field, or for plane waves

Acoustic Impedance:
- \(Z = \rho c \), \(\rho \): density, \(c \): sound speed
 - in air, 0\(^{\circ}\)C: \(\rho = 1.3 \text{ kg/m}^3 \), \(c = 331 \text{ m/s} \) => \(Z = 430 \text{ kg/m}^2\text{s} \)
 - in fresh water, 15\(^{\circ}\)C: \(\rho = 1,000 \text{ kg/m}^3 \), \(c = 1,481 \text{ m/s} \) => \(Z = 1,481,000 \text{ kg/m}^2\text{s} \)
 - in sea water, 15\(^{\circ}\)C, 3.5% salinity, 1m deep: \(\rho = 1,035 \text{ kg/m}^3 \), \(c = 1,507 \text{ m/s} \) => \(Z = 1,559,745 \text{ kg/m}^2\text{s} \)

Examples of Underwater Sound Levels

Source level (rms) of a zodiac with twin 175 hp outboard motors travelling @ 55 km/h [12]	169 dB re 1 \(\mu \)Pa
Source level (rms) of a zodiac with twin 175 hp outboard motors travelling @ 10 km/h [12]	147 dB re 1 \(\mu \)Pa
Source level of killer whale whistle [35]	140 dB re 1 \(\mu \)Pa
Beluga hearing threshold @ 500 Hz [16]	107 dB re 1 \(\mu \)Pa
Snapping shrimp spectrum @ 4 kHz [15]	72 dB re 1 \(\mu \)Pa
Beluga hearing threshold @ 10 kHz [16]	64 dB re 1 \(\mu \)Pa
Ambient noise, SS 2, @ 1 kHz [12]	59 dB re 1 \(\mu \)Pa

Acoustic Energy:
- energy of an acoustic wave
 - \(E \) [J: Joules]; 1 J = 1 kg m^2/s^2
 - sum of kinetic \(E \) (contained in particle movement) and potential \(E \) (= work done by elastic pressure forces)
 - proportional to squared pressure \(P^2 \) and time \(T \) in plane waves

Acoustic Intensity:
- acoustic energy \(E \) flowing through a unit area \(A \) perpendicular to the direction of propagation, per unit time \(T \)
 - \(I = E / AT = Pwr / A \)
 - \(I = P^2 / Z = P^2 / (\rho c) \) for plane waves

Acoustic Power:
- the amount of sonic energy \(E \) transferred (radiated) within a certain time \(T \)
 - \(Pwr = E / T = I \times A \)
 - \(Pwr \) [W: Watts]; 1 W = 1 J/s = 1 kg m^2/s^3

Decibel:
- [dB]
 - quantifies variables with large dynamic ranges on a logarithmic scale
 - quantities expressed in dB are referred to as “levels”
 - \(20 \log_{10}(P/P_{ref}) \), \(P_{ref} = 1 \mu \text{Pa} \) under water
• 10 log\(_{10}(I/I_{\text{ref}})\), \(I_{\text{ref}} = 6.5\times10^{-19}\) W/m\(^2\) for a plane wave with \(P_{\text{rms}} = 1\) µPa

Levels in Air vs. Water:
- Standard reference level in air: \(P_{\text{ref}} = 20\) µPa, under water: \(P_{\text{ref}} = 1\) µPa.
- 0 dB re 20 µPa = 26 dB re 1 µPa, because 20 log\(_{10}20 = 26\)
- For 2 sources of equal intensity in air and under water, the pressure under water is 36 dB greater than the pressure in air:
 \[
 I_a = I_w \Leftrightarrow P_a^2/Z_a = P_w^2/Z_w \Leftrightarrow P_w/P_a = \sqrt{(Z_w/Z_a)}
 \]
 \[
 20\log_{10}\sqrt{\rho_w/c_w/\rho_a/c_a} = 36
 \]

Some dB Mathematics:
- How to convert from dB to linear scale:
 e.g., 120 dB re 1 µPa = 20 log\(_{10}(x/\mu Pa)\)
 What is \(x\)?
 \(x = 10^{120/20}\) µPa = 10\(^{6}\) µPa
- Addition of dB (e.g. amplifier gains):
 120 dB re 1 µPa + 120 dB = 240 dB re 1 µPa
- Addition of dB referenced to absolute values:
 120 dB re 1 µPa + 120 dB re 1 µPa = 126 dB re 1 µPa, because
 120 dB re 1 µPa = 1 \times 10^{6} µPa
 1 \times 10^{6} µPa + 1 \times 10^{6} µPa = 2 \times 10^{6} µPa = 126 dB re 1 µPa; absolute values need to be added in linear space.
- A doubling in pressure adds 6 dB:
 \[
 20\log_{10}2P/P_{\text{ref}} = 20\log_{10}2 + 20\log_{10}(P/P_{\text{ref}}) = 6\text{ dB} + 20\log_{10}(P/P_{\text{ref}})
 \]
- A doubling in intensity adds 3 dB:
 \[
 10\log_{10}2I/I_{\text{ref}} = 10\log_{10}2 + 10\log_{10}(I/I_{\text{ref}}) = 3\text{ dB} + 10\log_{10}(I/I_{\text{ref}})
 \]
- A 10-fold increase in intensity adds 10 dB:
 \[
 10\log_{10}10I/I_{\text{ref}} = 10\log_{10}10 + 10\log_{10}(I/I_{\text{ref}}) = 10\text{ dB} + 10\log_{10}(I/I_{\text{ref}})
 \]
- Inversion of reference units changes the sign:
 -180 dB re 1V/µPa = +180 dB re 1µPa/V
- Addition of dB with differing reference units:
 -180 dB re 1V/µPa – 20 dB re FS/V = -200 dB re FS/µPa

Peak Pressure:
- maximum absolute value of the amplitude of a pressure time series \(P(t)\)

Peak Pressure Level:
- [dB re 1 µPa]
 \[
 SPL_{pk} = 20\log_{10}(\max(|P(t)|))
 \]

Peak-to-peak Pressure Level:
- [dB re 1 µPa]
 \[
 SPL_{pk-pk} = 20\log_{10}(\max(P(t)) - \min(P(t)))
 \]

RMS Pressure:
- root-mean-square of the time series \(P(t)\)
 - useful for continuous sound (as opposed to pulsed)
- [dB re 1 µPa]
 \[
 SPL_{rms} = 20\log_{10}\left(\frac{1}{T}\int_{T} P(t)^{2} \, dt\right)
 \]

Source Level:
- acoustic pressure at 1m distance from a point source
- \(SL\) [dB re 1 µPa @ 1m]
- For sources that are physically larger than a few cm (ship propellers, airguns etc.), the pressure is measured at some range, and a sound propagation model applied to compute what the pressure would have been at 1m range if the source could have been collapsed into a point-source.
- If \(P_{wr}\) is the total radiated source power in Watts, \(\rho = 1000\) kg/m\(^3\) the water density, and \(c = 1500\) m/s the sound speed, then
 \[
 SL = 10\log_{10}(10^{12} \rho c P_{wr} / 4\pi) = 170.77\text{ dB} + 10\log_{10}(P_{wr})
 \]
- A 1 Watt source has a \(SL\) of 170.77 dB re 1 µPa @ 1m.
- \(SL\) can also be expressed in terms of sound exposure [dB re 1µPa\(^3\cdot\)s].

Sound Exposure Level:
- proportional to the total energy of a signal
- for plane waves:
 \[
 SEL = 10\log_{10}\left(\frac{1}{T}\int_{T} P(t)^{2} \, dt\right)
 \]
 \[
 SEL = SPL_{rms} + 10\log_{10}T
 \]
- [dB re 1 µPa\(^3\cdot\)s]

In the presence of significant ambient noise \(P_{n}(t)\), noise energy needs to be subtracted to compute sound exposure from the signal
alone. In praxis, the noise energy is computed from a time section preceding or succeeding the signal:

\[
SEL = 10 \log_{10} \left(\int_0^T P(t)^2 \, dt - \int_{T+n}^{T+n+T} P_n(t)^2 \, dt \right)
\]

Pulse Length: For pulsed sound (e.g. airguns, pile driving), the pulse length \(T_{90\%} \) is taken as the time between the 5% and the 95% points on the cumulative energy curve. \(\text{SPL}_{\text{rms}90\%} \) is computed by integrating \(P^2 \) from \(T_{5\%} \) to \(T_{95\%} \).

\[
H(f) = \int_{-\infty}^{\infty} h(t) e^{-2\pi i ft} \, dt
\]

\[
h(t) = \int_{-\infty}^{\infty} H(f) e^{2\pi i ft} \, df
\]

Power Spectrum Density:
- describes how the power of a signal is distributed with \(f \)
- 1. read the signal time series [\(\mu \text{Pa} \)] in windows of length \(T \) [s]; 2. compute the Fourier Transform [\(\mu \text{Pa}/\text{Hz} \)]; 3. square the amplitudes, discard negative \(f \), double remaining amplitudes [\(\mu \text{Pa}^2/\text{Hz} \)]; 4. divide by \(T \) [\(\Rightarrow \mu \text{Pa}^2/\text{Hz} \)]
- If \(T=1\text{s} \), then the power is computed in bands of constant 1Hz width.

Power Spectrum Density Level: [dB re 1 \(\mu \text{Pa}^2/\text{Hz} \)]
- \(10 \log_{10} \) of squared sound pressure in 1 Hz bands (“1 Hz band level”)

Frequency Bands:
- The spectrum of a sound can be split into a series of adjacent frequency bands.
- **Constant bandwidth:** All bands are equally wide, e.g. 1 Hz \(\Rightarrow \) power spectrum density.
- **Proportional bandwidths:** The ratio of upper to lower frequency remains constant. Bands become wider with increasing \(f \). Common examples are octave and 1/3 octave bands.
- **Bandwidth** is computed as the difference between upper and lower band-edge frequency: \(\Delta f = f_{\text{up}} - f_{\text{low}} \)
- **Centre frequencies of proportional bands** are computed as the geometric mean (not the arithmetic mean): \(f_c = \sqrt{f_{\text{low}} \times f_{\text{up}}} \)

Octave Bands:
- Series of adjacent pass bands that are 1 octave wide.
- From one octave to the next, frequency doubles: \(f_{\text{up}} = 2 f_{\text{low}} \)

1/3 Octave Bands:
- Series of adjacent pass bands that are 1/3 of an octave wide.
- Every octave is split into 3 adjacent bands, not linearly but logarithmically.
Centre frequencies \(f_c \) of adjacent 1/3 octave bands are computed as
\[
f_c(n) = 10^{n/10}, \quad \text{where } n \text{ counts the 1/3 octave bands}
\]
The lower and upper frequencies of band \(n \) are:
\[
\begin{align*}
 f_{\text{low}}(n) &= 10^{-1/20} \times f_c(n) \\
 f_{\text{up}}(n) &= 10^{1/20} \times f_c(n)
\end{align*}
\]

Table 5: Centre frequencies of adjacent 1/3 octave bands [Hz] [2; 28].

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f_{\text{low}})</th>
<th>(f_{\text{up}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>12.5</td>
<td>16</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>31.5</td>
</tr>
<tr>
<td>40</td>
<td>50</td>
<td>63</td>
</tr>
<tr>
<td>80</td>
<td>100</td>
<td>125</td>
</tr>
<tr>
<td>160</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>315</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>630</td>
<td>800</td>
<td>1000</td>
</tr>
<tr>
<td>1250</td>
<td>1600</td>
<td>2000</td>
</tr>
<tr>
<td>2500</td>
<td>3150</td>
<td>4000</td>
</tr>
<tr>
<td>5000</td>
<td>6300</td>
<td>8000</td>
</tr>
<tr>
<td>10000</td>
<td>12500</td>
<td>16000</td>
</tr>
<tr>
<td>20000</td>
<td>31500</td>
<td>31500</td>
</tr>
</tbody>
</table>

Band Levels:
Consider the sketched intensity spectrum. The band level \(BL \) in the band \(f_1 \) to \(f_2 \) is the total intensity in this band: \(BL = 10 \log_{10}(I_{\text{tot}}/I_{\text{ref}}) \).

Let \(I_{1\text{Hz}} \) be the intensity spectral density, i.e. the intensity in 1Hz bands [intensity per Hz], and \(I_{\text{ave}} \) the average intensity per Hz, then:
\[
I_{\text{tot}} = \int_{f_1}^{f_2} I_{1\text{Hz}} \, df = I_{\text{ave}} \times (f_2 - f_1).
\]
The band level thus becomes:
\[
BL = 10 \log_{10}(I_{\text{ave}} \times \Delta f) = ISL_{\text{ave}} + 10 \log_{10}(\Delta f / \text{Hz}),
\]
where \(ISL_{\text{ave}} \) is the average intensity spectrum level.

1/3 Octave Band Levels:
- pressure or energy levels in bands that are 1/3 of an octave wide

Figure 3: Illustration of band levels versus power spectrum density levels, for the example of snapping shrimp noise [15]. The spectrum density level drops with increasing frequency up to 2kHz; the increase between 2-16kHz is attributable to snapping shrimp. Band levels are at least as high as the underlying spectrum density levels. There are twelve 1/12-octave bands in each octave, and three 1/3-octave bands. The wider the band, the higher the level, because more power gets integrated.

Percentile Levels:
- useful if the measured sound changes with time
- 50th percentile = median sound level
- The \(n \)th percentile gives the level that is exceeded \(n\% \) of the time (note: in engineering, the definition is reversed).
2. Sound Sources

a. Natural Sound Sources

Ambient Noise Spectra ("Wenz Curves"):

Figure 5 was adapted from Wenz [52]. While the often cited "Wenz curves" show sea state dependent noise spectra only above 200 Hz, with a peak at about 500 Hz, Wenz himself showed measurements at lower frequencies [52]. Spectrum levels exhibited a local minimum at about 100-200 Hz and rose for \(f < 100 \) Hz. A similar relationship was observed by Cato [4] around Australia. The "Cato curves" were joined to the "Wenz curves" in Figure 5.
Beaufort Scale:*

<table>
<thead>
<tr>
<th>Wind Speed [kn]</th>
<th>Beaufort Scale</th>
<th>Sea State (SS)</th>
<th>Wave Height [m]</th>
<th>WMO Meteorological Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Calm</td>
<td>Flat, glassy</td>
</tr>
<tr>
<td>1-2</td>
<td>1</td>
<td>0.5</td>
<td>0.1</td>
<td>Light air</td>
<td>Ripples without crests</td>
</tr>
<tr>
<td>3-6</td>
<td>2</td>
<td>1</td>
<td>0.2</td>
<td>Light breeze</td>
<td>Small wavelets, glassy crests</td>
</tr>
<tr>
<td>7-10</td>
<td>3</td>
<td>2</td>
<td>0.6</td>
<td>Gentle breeze</td>
<td>Large wavelets, crests begin to break</td>
</tr>
<tr>
<td>11-15</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>Moderate breeze</td>
<td>Small waves, whitecaps</td>
</tr>
<tr>
<td>16-20</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>Fresh breeze</td>
<td>Moderate waves, some foam + spray</td>
</tr>
<tr>
<td>21-26</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>Strong breeze</td>
<td>Large waves with foam crests</td>
</tr>
<tr>
<td>27-33</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>Near gale</td>
<td>Sea heaps up, foam begins to be blown</td>
</tr>
<tr>
<td>34-40</td>
<td>8</td>
<td>6</td>
<td>5.5</td>
<td>Gale</td>
<td>High waves, breaking crests form spindrift, streaks of foam</td>
</tr>
<tr>
<td>41-47</td>
<td>9</td>
<td>6</td>
<td>7</td>
<td>Strong gale</td>
<td>High waves with dense foam, crests roll over</td>
</tr>
<tr>
<td>48-55</td>
<td>10</td>
<td>7</td>
<td>9</td>
<td>Storm</td>
<td>Considerable tumbling of waves with heavy impact, large amounts of airborne spray reduce visibility</td>
</tr>
<tr>
<td>56-63</td>
<td>11</td>
<td>8</td>
<td>11.5</td>
<td>Violent storm</td>
<td>Very large patches of foam driven before the wind cover much of the sea surface</td>
</tr>
<tr>
<td>> 64</td>
<td>12</td>
<td>9</td>
<td>> 14</td>
<td>Hurricane</td>
<td>Sea completely white with foam, air filled with spray</td>
</tr>
</tbody>
</table>

Table 6: Beaufort Scale + Sea State. WMO: World Meteorological Organization.

Deep Ocean Ship Noise: Since Wenz’ studies in the 1960s, the number of commercial vessels has approximately doubled, and the gross tonnage quadrupled, with a corresponding increase in horsepower. Deep ocean ambient noise west of California rose by 10-12 dB in 40 years (spectrum levels 10-12 dB higher than in Figure 5), and was attributed to shipping [34].

b. Anthropogenic Sound Sources

- ships, small to large: whale-watching boats; coast guard vessels; support vessels for construction & exploration; naval ships; fishing vessels; cargo vessels
- seismic exploration: oil & gas industry; research
- sonars: fish-finding, echo-ranging, military
- scientific sources; acoustic communication & navigation
- construction & industrial activities: drilling, trawling, dredging, pile driving, renewable energies (wind turbines, tidal power plants)
- explosions: dynamite fishing; military; decommissioning
- aquaculture noise including acoustic deterrent and harassment devices
- low-flying aircraft

Ship Noise:

- consists of machinery noise (main engines, auxiliary machinery, gears) and hydrodynamic noise (flow past the hull, appendages + cavities; blade rate tones; propeller singing; cavitation);
- all machinery on a ship radiates sound through the hull into the water;
- noise increases with ship size, power, load, and speed;
- ships with propellers are generally louder than ships with jet propulsion;
- propeller cavitation is the loudest component for speeds greater than the cavitation inception speed;
- tones at low frequencies correspond to propeller blade rate and harmonics: $f [\text{Hz}] = \text{number of blades} \times \text{rpm}/60$;
- small vessels have small propellers turning at higher speeds resulting in higher frequency blade-rate tones;
- at low frequency (< a few 100 Hz), the ship spectrum also has tonal components from engines and gears; these spectral lines form the acoustic signature of the ship and allow acoustic identification;
- for $f > 100 \text{Hz}$ the spectrum falls as $-20 \log_{10} f$.

(c) JASCO Applied Sciences

13 14 (c) JASCO Applied Sciences
Doppler Shift:

- The frequency of tones shifts up if a source moves towards a receiver, and down if a source moves away from a receiver. If \(f_r \): received frequency [Hz]; \(f_o \): fundamental frequency [Hz]; \(c \): velocity of sound [m/s]; \(u \): velocity of the source towards (+) or away (-) from the receiver [m/s]; \(v \): velocity of the receiver towards (-) or away (+) from the source [m/s], then

\[
 f_r = f_o \left(\frac{c + u}{c + v} \right)
\]

- E.g. boat approaching at \(u = 55 \text{km/h} \) (30kn, 15m/s); \(f_o = 200 \text{ Hz blade rate frequency; receiving hydrophone stationary (v = 0)}: f_r = 202 \text{ Hz}. \)

- The Doppler Shift increases with increasing speed of the source and receiver towards each other. It plays an important role in active sonar detection, e.g. anti-submarine warfare.

Cavitation: Rotating propellers create regions of low pressure behind the blades. If the pressure drops below the vapor pressure, the water vaporizes, creating bubbles, which become unstable and collapse. Analogy: boiling. Boiling is a result of increasing temperature; cavitation is a result of decreasing pressure.

Ross [45] derived an average ship spectrum (Figure 6) relative to a reference level \(L \).

\[
 L = 175 + 60 \log(u/25) + 10 \log(B/4) ,
\]

With an ‘average’ \(u = 37.5 \text{ m/s} \) and \(B = 4 \), Scrimger & Heitmeyer [46] computed the predicted Ross spectrum and compared this to 50 measurements of large merchant ships. The measured mean fitted the Ross curve very well, with a maximum deviation of 4 dB (below the predicted level, up to 700 Hz). Hamson [26] used the same measured mean spectrum \((SV(f))\) and derived an equation for the source spectrum \(SL \) as a function of vessel speed \(V \text{ [knots]} \) and vessel length \(Le \text{ [feet]}\):

\[
 SL = SV(f) + 60 \log(V/12) + 20 \log(Le/300)
\]

Noise spectra of other vessels can be found in [12] for zodiacs and [18] for icebreakers.

Seismic Exploration:

- most commonly done with arrays of airguns as the acoustic source
- survey vessel (e.g. travelling at 5 knots) tows airgun array
- array fired every few (e.g. 10) seconds
- pulsed pressure waveform sent into the ground
- reflections from various geological layers at various depths are received by the receivers
- receivers can be streamers (hydrophone arrays) towed behind the source array or hydrophones along ocean bottom cables

Figure 6: Relative spectrum density levels of large ships [45]. The spectrum follows \(-20 \log f \text{ above 100Hz. Spectral lines at f=500Hz (not shown) supersede this average spectrum and differ from ship to ship.}\)

Figure 7: Sketch of a seismic survey. The survey ship tows both the airgun array and the receiving hydrophone streamers.
Airgun:
- underwater chamber of compressed air
- rapidly released air creates oscillating bubble in the water
- omni-directional propagating pressure wave
- waveform shows a primary peak (the desired signal for geophysical profiling) followed by a series of decaying bubble pulses (Figure 8)
- GI guns consist of 2 chambers: a generator and an injector. The generator is fired first producing the primary peak; the injector is fired at half the bubble period (Figure 8); this reduces the unwanted bubble pulse. The spectrum of a GI gun is smoother than that of a sleeve airgun.

![Airgun Waveform and Spectrum](image)

Figure 8: Waveform and spectrum of a ‘normal’ single-chamber airgun (---), and of a GI gun (solid line) [31].

Airgun Arrays: • Airguns arranged in arrays are tuned to focus sharply pulsed pressure downward into the ground. Energy emission and propagation in the horizontal is reduced.
- Airgun arrays exhibit a frequency-dependent directivity pattern in the horizontal. At low frequencies, they appear omni-directional. They go through a dipolar and quadrupolar pattern at a few hundred Hz and become more multipolar with higher frequency.

Explosions: • produce a shock wave travelling in all directions underwater
- waveform shows an ‘infinitely’ steep front, high peak pressure, and rapid decay
- \(W \): charge weight or TNT mass [kg]; \(R \): range [m]
P(t) = P \times e^{-t/t_0} \quad : \text{pressure waveform}

P_p = 5.24 \times 10^{13} \left(\frac{W^{1/3}}{R} \right)^{1.13} \quad : \text{peak pressure [µPa]}

t_0 = 92.5 \left(\frac{W^{1/3}}{R} \right)^{-0.22} \quad : \text{decay constant [µs]}

[Aarons et al. via [49]]

Pile Driving:

Vibratory pile driving:
• vibratory pile driver sits on top of pile
• consists of counter-rotating eccentric weights, arranged such that horizontal vibrations cancel out while vertical vibrations get transmitted into the pile
• less noisy than impact pile driving

Impact pile driving:
• weight hammers pile into the ground
• different methods for lifting the weight: hydraulic, steam or diesel
• acoustic energy is created upon impact; travels into the water along different paths:
 1. from the top of the pile where the hammer hits, through the air, into the water;
 2. from the top of the pile, down the pile, radiating into the air while travelling down the pile, from air into water;
 3. from the top of the pile, down the pile, radiating directly into the water from the length of pile below the waterline;
 4. ... down the pile radiating into the ground, travelling through the ground and radiating back into the water
• In the water, sound is reflected and refracted.
• Near the pile, acoustic energy arriving from different paths with different phase and time lags creates a pattern of destructive and constructive interference.
• Further away from the pile, water and ground borne energy prevails.
• Noise increases with pile size (diameter and wall thickness), hammer energy, and ground hardness. Figure 10 shows how the level increases as one pile is driven from start to end.

Figure 10: Waveform of impact pile driving recorded at 320m range. Water depth 3m, hollow steel pile, diameter 0.8 m, wall thickness 1.3cm, driven to 25m below ground, into sandstone bedrock, hydraulic hammer of 12t weight and 180 kJ energy rating [15].

Figure 11 gives power spectra for a number of anthropogenic sources: airgun array 2900 in3 volume, measured broadside [JASCO]; pile driving 1.5m diameter hollow steel pile, 280 kJ hydraulic hammer [15]; icebreaker propeller cavitation during ridge ramming [18]; large vessels [45; 46; 49]; mean of five dredges dredging and dumping [JASCO]; a drilling caisson [JASCO] and mean whale-watching zодiacs [12]. Spectra of the pulsed sources (airgun array and pile driving) were computed over the pulse length $T_{90\%}$ (see p. 7) comprising 90% of the total energy. All spectra were measured at some range and back-propagated to 1m to compute source levels. This method assumes a point source and thus over-estimates levels that can be measured close to physically large sources. E.g., in the near field (see Figure 17) of an airgun array, waveforms from individual airguns superpose constructively and deconstructively creating spatially variable received levels (an interference pattern) that are always less than estimated by back-propagating long-range levels. In other words, reported source levels are useful to predict received levels at long ranges, but overpredict near-field levels.
3. Sound Propagation

a. Overview

To model sound propagation, one needs to solve the wave equation under appropriate boundary conditions.

Wave Equation:

$$\nabla^2 \Phi = \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2}$$

- c: speed of sound; t: time

Harmonic Solution:

$$\Phi = \phi \times e^{-i\omega t}$$

- ϕ: amplitude; $\omega = 2\pi f$: angular frequency

- inserting the harmonic solution into the wave equation yields the:

Helmholtz Equation:

$$\nabla^2 \phi + k^2 \phi = 0$$

- $k = \omega/c = 2\pi/\lambda$: wavenumber

Solutions to the Helmholtz Equation:

1. $\phi = F(x,y,z)e^{i\beta(x,y,z)}$

 - F: amplitude function; β: phase function
 - range-dependent \Rightarrow **Ray Theory**

2. $\phi = F(z)G(r)$

 - F: depth function \Rightarrow Normal Mode equation \Rightarrow Green’s function
 - G: range function \Rightarrow Bessel equation \Rightarrow Hankel function
 - range-independent \Rightarrow **Normal Mode Models, Multipath Expansion Models, and Fast Field Models**

3. $\phi = F(r,\theta,z)G(r)$

 - F: depth function \Rightarrow Parabolic equation
 - G: range function \Rightarrow Bessel equation \Rightarrow Hankel function
 - range-dependent \Rightarrow **Parabolic Equation (PE) Models**

Phase-coherence:

- The propagation model considers phase.
- Models that ignore phase are called incoherent.

b. Sonar Equation

- equation of energy conservation
- originally developed to assess sonar performance
- summation of terms that are all expressed in dB

Source Parameters | Symbol | Definition

| Source Level | SL | $10\log_{10}(\text{source intensity} / \text{reference intensity})$ |
| Source Directivity Index | DI | $10\log_{10}(\text{intensity of a directional source in the source-to-target direction} / \text{intensity of an omni-directional source of equal power})$ |
Medium Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission Loss</td>
<td>$\text{TL} = 10 \log_{10}(\text{signal intensity @ source} / \text{signal intensity @ target or receiver})$</td>
</tr>
<tr>
<td>Noise Level</td>
<td>$\text{NL} = 10 \log_{10}(\text{noise intensity} / \text{reference intensity})$</td>
</tr>
</tbody>
</table>

Target Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Strength</td>
<td>$\text{TS} = 10 \log_{10}(\text{echo intensity} / \text{incident intensity})$</td>
</tr>
</tbody>
</table>

Receiver Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received Level</td>
<td>$\text{RL} = 10 \log_{10}(\text{received intensity} / \text{reference intensity})$</td>
</tr>
<tr>
<td>Receiver Directivity Index</td>
<td>$\text{Di}{r} = 10 \log{10}(\text{intensity measured by an omni-directional receiver} / \text{intensity of a directional receiver in the same isotropic sound field})$</td>
</tr>
<tr>
<td>Detection Threshold</td>
<td>$\text{DT} = 10 \log_{10}(\text{signal intensity} / \text{noise intensity})@\text{threshold}$</td>
</tr>
</tbody>
</table>

Table 7: Terms in the sonar equation. Further terms exist.

One-way Sonar Equation:

For the signal of an omni-directional source to be detected at a directional receiver, the following equation has to be satisfied.

$$SL - TL - NL + Di_r > DT$$

Two-way Sonar Equation:

For a signal from an omni-directional source to be detected at a directional receiver at the source location after reflection off a target, the following equation has to be satisfied.

$$SL - 2TL + TS - NL + Di_r > DT$$

Transmission Loss:

$$RL = SL - TL$$

The following equations can be used as a fast and rough estimate for how sound energy dissipates as a function of range R from the source.

Geometric Spreading:
Spherical Spreading Loss:

near the source, where sound can propagate uniformly in all directions: $\text{TL} = 20 \log_{10}(R/1m)$

Cylindrical Spreading Loss:

In very shallow water, sound cannot propagate as a spherical wave in all directions, but only as a cylindrical wave bound by the sea floor and the sea surface. $\text{TL} = 10 \log_{10}(R/1m)$

Combined Spreading Loss:

In general, sound will propagate spherically near the source. At some range H, the spherical wave hits the sea floor, from here on, sound propagates cylindrically. At a range R greater than the water depth H, the TL is:

$$\text{TL} = 20 \log_{10}(H/1m) + 10 \log_{10}(R/H) = 10 \log_{10}(H/1m) + 10 \log_{10}(R/1m)$$

![Figure 12: Geometrical transmission loss for a source of 200 dB re 1µPa @ 1m. In the combined case, the sound spreads spherically until $R = H = 100m$, and cylindrically thereafter. Spreading loss is f-independent. Thin lines: Spherical spreading + f-dependent absorption for $f = 10kHz$ and $f = 100kHz$.](image-url)
Molecular Relaxation (Absorption) Loss:
- due to the relaxation of boric acid B(OH)₃ and magnesium sulphate MgSO₄ molecules, and the shear & bulk viscosity of pure water

\[TL = \alpha R \]

\[\alpha = 0.106 f_1 f_2 \left(f_1^2 + f_2^2 \right)^{-1/2} e^{(pH-8)/0.56} + 0.52(1 + \frac{T}{43}) \frac{S}{35} \frac{f_2 f_2^2}{f_2^2 + f_2^2} e^{-z/16} \]

\[+ 4.9 \times 10^{-4} f_2^2 e^{-(T/27+z/17)} \]

with \(f_1 = 0.78(S/35)^{1/2}e^{T/26} \) and \(f_2 = 42e^{T/17} \): \(f \) [kHz], \(\alpha \) [dB/km]

valid for
- \(-6 < T < 35^\circ C \) (\(S=35\)ppt, \(pH=8 \), \(z=0 \))
- \(7.7 < pH < 8.3 \) (\(T=10^\circ C \), \(S=35\)ppt, \(z=0 \))
- \(5 < S < 50\)ppt (\(T=10^\circ C \), \(pH=8 \), \(z=0 \))
- \(0 < z < 7\)km (\(T=10^\circ C \), \(S=35\)ppt, \(pH=8 \)) \[1; 24; 25\]

Reverberation:
- unwanted echoes that limit signal detection or sonar performance
- originates from reflection and scattering off the seafloor, sea surface and volume inhomogeneities
- can lead to continuous background noise or discrete interferences

The change in the speed of sound with depth distorts the spherical and cylindrical wave fronts. This effect is treated by more sophisticated propagation models.

c. RAY Propagation

Reflection:
- is the change in direction of a wave at an interface between two different media so that the wave returns into the medium from which it originated
- In specular (mirror-like) reflection, the angles of incidence and reflection are equal: \(\theta_1 = \theta_2 \)

Refraction:
- is the change in direction of a wave due to a change in its speed

A ray is the normal vector of a wavefront, pointing in the direction of propagation. Ray models trace rays by repeatedly applying:

Snell’s Law: For layered media (layers of ocean water of differing properties), Snell’s Law relates the angles of incidence and refraction at a layer boundary.

\[\frac{\cos \theta_1}{c_1} = \frac{\cos \theta_2}{c_2} \]

Rays bend towards the horizontal if \(c_2 > c_1 \), and away from the horizontal if \(c_1 > c_2 \).
Sound Speed Profiles:
The speed of sound in sea water depends on the temperature $T\,[{\circ}C]$, salinity $S\,[\text{ppt}]$, and depth $D\,[\text{m}]$.

\[
c\,[\text{m/s}] = 1448.96 + 4.591\,T - 5.304 \times 10^{-2}\,T^2 + 2.374 \times 10^{-4}\,T^3 + 1.340\,(S - 35) + 1.630 \times 10^{-3}\,D + 1.675 \times 10^{-7}\,D^2 - 1.025 \times 10^{-2}\,T(S - 35) - 7.139 \times 10^{-13}\,TD^3\ [32]
\]

- **negative sound gradient**: sound speed decreases with depth => sound refracts downwards
- **positive sound gradient**: sound speed increases with depth => sound refracts upwards
- sound speed in the deep isothermal layer increases by 1.7m/s every 100m in depth

SOFAR Channel:
- abbreviation for SOund Fixing And Ranging;
- also called **deep sound channel**;
- horizontal layer of water at the depth where c is minimum;
- this depth is called the channel axis;
- axis is about 1000m deep at low latitude and reaches the sea surface at high latitude, i.e. the polar regions;
- acts as a waveguide for sound, ‘trapping’ propagation paths.

Convergence Zone: region where ray paths converge
Shadow Zone: region into which rays cannot enter by refraction alone
Lloyd Mirror Effect:

Consider a source under the water surface (e.g. a ship propeller). A ray emitted upwards reflects off the surface and experiences a 180° phase shift. The surface-reflected path interferes with the direct path at any receiver location. The surface-reflected path can be considered originating from a negative (inverted pressure) image source in air. For horizontal propagation over long ranges, the path lengths of the direct and surface-reflected paths will be similar and the pressures will cancel out. At close ranges, the two rays create a pattern of constructive and destructive interference. The Lloyd Mirror Effect is assumed to play a role in ship strikes of manatees and other marine mammals that spend a significant amount of time near the surface.

4. Sound Receivers

a. Transducers

Hydrophones: convert acoustic (as opposed to hydrostatic) pressure to voltage

Sensitivity:
- given as negative number [dB re 1V/µPa]
- depends on frequency, but usually flat over a nominal bandwidth
- e.g. a sensitivity S of -200 dB re 1V/µPa implies a ratio of 1V/10^4Pa, because:
 -200 dB re 1V/µPa = 20log_{10}(x/(1V/µPa))
 -10 = log_{10}(x/(1V/µPa))
 $10^{-10} = x/(1V/µPa)$
 $x = 10^{10}V/µPa = 10^{-4}V/Pa = 1V/10^4Pa$

- A less negative sensitivity belongs to a more sensitive hydrophone, e.g. a hydrophone with a sensitivity of -180 dB re 1V/µPa is more sensitive than a hydrophone with a sensitivity of -200 dB re 1V/µPa.

Projectors:
- convert voltage to a pressure wave underwater
- have a transmit sensitivity that depends on frequency

Near Field (Fresnel Zone): Consider the surface of a transducer a series of separate point sources. At any location in the near field of the transducer, the individual pressure waves will have travelled different distances, arriving with different phases. The near field therefore consists of regions of constructive and destructive interference. All transducers, whether used as hydrophones or projectors, have near and far fields.

The **Fresnel Distance** is the range from the source beyond which the amplitude does not oscillate anymore, but monotonically decreases. Oscillations are only possible as long as the phase difference between two points on the source surface that are maximally apart is greater than half a wavelength.

![Near Field, Fresnel Distance, Far Field](image.png)

Figure 17: On-axis SPL from a circular piston with radius 6m, f = 1.2 kHz.

Far Field (Fraunhofer Zone): For receivers far from the transducer, travel differences between waves originating at different places on the transducer surface will be minimal, waves will arrive in phase, intensity decreases as $1/R^2$. While the intensity decreases monotonically for ranges greater than the Fresnel Distance, it is only at a range about four
times the Fresnel Distance that the intensity approaches the spherical spreading term.

Examples: • line array: \(R_{ff} = \frac{l^2}{\lambda} \), where \(l \): array length
• circular piston: \(R_{ff} = \frac{\pi r^2}{\lambda} \), where \(r \): radius of the piston
• airgun array: \(R_{ff} = \frac{l^2}{\lambda} \), where \(l \): largest active dimension of the source

Directivity Pattern:
• angular distribution of projected energy (in the case of projectors)
• received level as a function of the direction of arrival of the acoustic wave (in the case of hydrophones)
• depends on the shape and size of the transducer, and frequency; e.g. Figure 9
• omnidirectional: circular pattern; independent of angle

Beamforming: For an array of transducers (hydrophones or projectors), phase or time shifts between the elements can be chosen such as to steer the direction of the main lobe of the overall directivity pattern of the array.

b. Amplifiers

Gain:
\(G = 20 \log_{10}(\frac{V_2}{V_1}) \),
where
\(V_1 \): input voltage;
\(V_2 \): output voltage
E.g. hydrophone connected to amplifier & output voltage measured with voltmeter; then the SPL measured is:
\(SPL = 20 \log_{10}(V_2) - G - S \)
If \(G > 0 \), then the amplifier increases the amplitude.
If \(G < 0 \), this element works as an attenuator, not an amplifier.
E.g., \(S = -200 \text{ dB re 1V/µPa}; G = 20 \text{ dB} \):
\(SPL = 20 \log_{10}(V_2) - G - S \)
\(= 20 \log_{10}(V_2) - 20 \text{ dB} - (-200 \text{ dB}) \)
\(= 20 \log_{10}(V_2) + 180 \text{ dB} \)

Take \(20 \log_{10} \) of the measured voltage [in units of Volt] and subtract (!) the gains, that’s your SPL in dB re 1 µPa.

c. Data Acquisition (DAQ) Boards

• analog-to-digital A/D converters, e.g. digital audio recorders
• have a digitization gain of \(M \) [dB re FS/V], where \(FS \) is the digital full scale value that is divided by the input voltage \(V_{max} \) [V] required to reach digital full scale
E.g. \(M = 10 \text{ dB re FS/V} \) means that 0.32V input leads to full scale because:
\(10 = 20 \log_{10}(x/(FS/V)) \)

\(\log_{10}(x/(FS/V)) = 0.5 \)
\(x = 10^{1/2} FS/V = FS/0.32V \)
The full scale value depends on the number of bits \(n \) of the A/D converter. In bipolar mode, \(FS = 2^n/2 = 2^{n-1} \).
E.g. 16-bit DAQ: \(FS = 2^{15}/2 = 32768 \), so the digital values will lie between \(-32768 \leq dv \leq 32767 \).

Resolution:
• is the voltage increment from one digital value to the next: \(\Delta V = V_{max}/FS \)
E.g. for a 16-bit DAQ with \(V_{max} = 10V; \Delta V = 0.3mV \)
This is the smallest voltage and the smallest voltage difference that can be resolved. In between values will be rounded, producing a quantization error of \(\pm \Delta V/2 \).

Example:
\(SPL = 20 \log_{10}(dv/FS) - M - G - S \), where \(dv \) = digital values in the .dat file
If \(S = -180 \text{ dB re 1V/µPa}; G = 20 \text{ dB}; M = 10 \text{ dB re FS/V} \), then
\(SPL = 20 \log_{10}(dv/FS) - 10 \text{ dB} - 20 \text{ dB} - (-180 \text{ dB}) \)
\(= 20 \log_{10}(dv/FS) + 150 \text{ dB} \)
Divide the digital values in the .dat or .wav files by \(FS \); take \(20 \log_{10} \); subtract all gains; that’s your \(SPL \) in dB re 1 µPa.
Dynamic Range:
- is the range in SPL that the recording system can measure.
- same example as above, and assuming the DAQ board is 16 bit.
- The smallest amplitude that the DAQ can record corresponds to a digital value of 1. With $FS = 32768$:

$$SPL_{min} = 20 \log_{10}(1/FS) + 150 \text{ dB re 1 } \mu\text{Pa}$$
$$= -90 \text{ dB } + 150 \text{ dB re 1 } \mu\text{Pa} = 60 \text{ dB re 1 } \mu\text{Pa}$$
- The largest amplitude that the DAQ can record corresponds to a digital value of FS:

$$SPL_{max} = 20 \log_{10}(FS/FS) + 150 \text{ dB re 1 } \mu\text{Pa}$$
$$= 0 \text{ dB } + 150 \text{ dB re 1 } \mu\text{Pa} = 150 \text{ dB re 1 } \mu\text{Pa}$$
- Louder input signals (waves with larger amplitudes) will be clipped.

Part B: The Effects of Noise on Marine Mammals

5. Marine Mammals of the World
The following distribution maps are approximate only and were mainly taken from [43]. For many species, in particular many beaked whale species, the maps were drawn ‘generously’ from only very few sightings. The right columns refer to the Figure numbers of the distribution maps.

Order CETACEA: Whales & Dolphins
Suborder ODONTOCETI: Toothed Whales

<table>
<thead>
<tr>
<th>Family DELPHINIDAE</th>
<th>Common name</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cephalorhynchus commersonii</td>
<td>Commerson’s dolphin</td>
<td>20</td>
</tr>
<tr>
<td>Cephalorhynchus eutropia</td>
<td>Chilean (black) dolphin</td>
<td>20</td>
</tr>
<tr>
<td>Cephalorhynchus heavisidii</td>
<td>Heaviside’s dolphin</td>
<td>20</td>
</tr>
<tr>
<td>Cephalorhynchus hectori</td>
<td>Hector’s dolphin</td>
<td>20</td>
</tr>
<tr>
<td>Delphinus capensis</td>
<td>Long-beaked common dolphin</td>
<td>21</td>
</tr>
<tr>
<td>Delphinus delphis</td>
<td>Common dolphin</td>
<td>21</td>
</tr>
<tr>
<td>Feresa attenuata</td>
<td>Pygmy killer whale</td>
<td>21</td>
</tr>
<tr>
<td>Globicephala macrorhynchus</td>
<td>Short-finned pilot whale</td>
<td>21</td>
</tr>
<tr>
<td>Globicephala melas</td>
<td>Long-finned pilot whale</td>
<td>21</td>
</tr>
<tr>
<td>Grampus griseus</td>
<td>Risso’s dolphin</td>
<td>22</td>
</tr>
<tr>
<td>Lagenodelphis hosei</td>
<td>Fraser’s dolphin</td>
<td>18</td>
</tr>
<tr>
<td>Lagenorhynchus acutus</td>
<td>Atlantic white-sided dolphin</td>
<td>18</td>
</tr>
<tr>
<td>Lagenorhynchus albirostris</td>
<td>White-beaked dolphin</td>
<td>18</td>
</tr>
<tr>
<td>Lagenorhynchus australis</td>
<td>Peale’s dolphin</td>
<td>18</td>
</tr>
<tr>
<td>Lagenorhynchus cruciger</td>
<td>Hourglass dolphin</td>
<td>18</td>
</tr>
<tr>
<td>Lagenorhynchus obliquidens</td>
<td>Pacific white-sided dolphin</td>
<td>18</td>
</tr>
<tr>
<td>Lagenorhynchus obscurus</td>
<td>Dusky dolphin</td>
<td>18</td>
</tr>
<tr>
<td>Lissodelphis borealis</td>
<td>Northern right whale dolphin</td>
<td>22</td>
</tr>
<tr>
<td>Lissodelphis peronii</td>
<td>Southern right whale dolphin</td>
<td>22</td>
</tr>
<tr>
<td>Orcaella brevirostris</td>
<td>Irrawaddy dolphin</td>
<td>22</td>
</tr>
<tr>
<td>Orcinus orca</td>
<td>Killer whale</td>
<td>23</td>
</tr>
<tr>
<td>Peponocephala electra</td>
<td>Melon-headed whale</td>
<td>23</td>
</tr>
<tr>
<td>Pseudorca crassidens</td>
<td>False killer whale</td>
<td>23</td>
</tr>
<tr>
<td>Sotalia fluviationis</td>
<td>Tucuxi</td>
<td>22</td>
</tr>
<tr>
<td>Sousa chinensis</td>
<td>Indo-Pacific humpback dolph.</td>
<td>23</td>
</tr>
<tr>
<td>Sousa teuszii</td>
<td>Atlantic humpback dolph.</td>
<td>23</td>
</tr>
<tr>
<td>Stenella attenuata</td>
<td>Pantropical spotted dolphin</td>
<td>19</td>
</tr>
<tr>
<td>Stenella clvymne</td>
<td>Clymene dolphin</td>
<td>19</td>
</tr>
<tr>
<td>Stenella coeruleoalba</td>
<td>Striped dolphin</td>
<td>19</td>
</tr>
<tr>
<td>Stenella frontalis</td>
<td>Atlantic spotted dolphin</td>
<td>19</td>
</tr>
<tr>
<td>Stenella longirostris</td>
<td>Spinner dolphin</td>
<td>19</td>
</tr>
<tr>
<td>Steno bredanensis</td>
<td>Rough-toothed dolphin</td>
<td>22</td>
</tr>
<tr>
<td>Tursiops aduncus</td>
<td>Indo-Pacific bottlenose dolph.</td>
<td>20</td>
</tr>
<tr>
<td>Tursiops truncatus</td>
<td>Common bottlenose dolphin</td>
<td>20</td>
</tr>
</tbody>
</table>
Figure 18: Distribution of *Lagenodelphis hosei* + *Lagenorhynchus* sp.

Figure 19: Distribution of *Stenella coeruleoalba* (||), *S. longirostris* (=), *S. attenuata* (\/), *S. frontalis* (light + dark grey) and *S. clymene* (dark grey).

Figure 20: Distribution of *Tursiops truncatus* (wide grey band), *T. aduncus* (dark grey; coasts of the Indian ocean and western Pacific), and *Cephalorhynchus* sp. (small localized regions).

Figure 21: Distribution of *Feresa* (\/), *Globicephala macrocephalus* (=), *G. melas* (||), *Delphinus delphis* (light grey, double-line) and *D. capensis* (dark grey, single line).

Figure 22: Distribution of *Steno bredanensis* (=), *Grampus griseus* (||), *Lissodelphis peronii* (\/), *L. borealis* (\), *Orcaella* and *Sotalia* (grey).

Figure 23: Distribution of *Peponocephala* (=), *Orcinus* (||), *Pseudorca* (\), and *Sousa* sp. (grey).
Family PHOCOENIDAE: Porpoises

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neophocaena phocaenoides</td>
<td>Finless porpoise</td>
<td>24</td>
</tr>
<tr>
<td>Phocoena dioptrica</td>
<td>Spectacled porpoise</td>
<td>24</td>
</tr>
<tr>
<td>Phocoena phocoena</td>
<td>Harbor porpoise</td>
<td>24</td>
</tr>
<tr>
<td>Phocoena sinus</td>
<td>Vaquita</td>
<td>24</td>
</tr>
<tr>
<td>Phocoena spinipinnis</td>
<td>Burmeister's porpoise</td>
<td>24</td>
</tr>
<tr>
<td>Phocoenoides dalli</td>
<td>Dall's porpoise</td>
<td>24</td>
</tr>
</tbody>
</table>

Family MONODONTIDAE

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delphinapterus leucas</td>
<td>Beluga whale</td>
<td>25</td>
</tr>
<tr>
<td>Monodon monoceros</td>
<td>Narwhal</td>
<td>25</td>
</tr>
</tbody>
</table>

Family PHYSETERIDAE

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physeter macrocephalus</td>
<td>Sperm whale</td>
<td>25</td>
</tr>
</tbody>
</table>

Family KOGIIDAE

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kogia breviceps</td>
<td>Pygmy sperm whale</td>
<td>25</td>
</tr>
<tr>
<td>Kogia sima</td>
<td>Dwarf sperm whale</td>
<td>25</td>
</tr>
</tbody>
</table>

Family PLATANISTIDAE

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platanista gangetica gangetica</td>
<td>Ganges river dolphin</td>
<td>25</td>
</tr>
<tr>
<td>Platanista gangetica minor</td>
<td>Indus river dolphin</td>
<td>25</td>
</tr>
</tbody>
</table>

Family PONTOPORIIDAE

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pontoporia blainvillei</td>
<td>Franciscana</td>
<td>25</td>
</tr>
</tbody>
</table>

Family LIPOTIDAE

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipotes vexillifer</td>
<td>Baiji, Chinese river dolphin</td>
<td>25</td>
</tr>
</tbody>
</table>

Family INIIDAE

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inia geoffrensis</td>
<td>Boto, Amazon river dolphin</td>
<td>25</td>
</tr>
</tbody>
</table>

Figure 24: Distribution of porpoises.

Figure 25: Distribution of Physeter (=), Kogia sp. (||), Delphinapterus (\//), Monodon, Pontoporia, Lipotes, Inia and Platanista (grey).
Mesoplodon layardi	Strap-toothed whale	26
Mesoplodon mirus | True’s beaked whale | 27
Mesoplodon peruvianus | Pygmy beaked whale | 26
Mesoplodon stejnegeri | Stejneger’s beaked whale | 26
Mesoplodon traversii | Spade-toothed beaked whale | 28
Tasmacetus shepherdii | Shepherd’s beaked whale | 28
Ziphius cavirostris | Cuvier’s beaked whale | 27

Figure 26: Distribution of *Mesoplodon densirostris* (=), *M. hectori* (\), *M. stejnegeri* (/), *M. layardi* (||), *M. peruvianus*, *M. bidens* and *M. bowdoini* (grey).

Figure 27: Distribution of *Ziphius* (=), *M. grayi* (||), *B. bairdii* (\), *B. arnuxii* (/), *M. carlhubbsi*, *M. mirus* and *I. pacificus* (grey).

Figure 28: Distribution of *M. ginkgodens* (=), *H. planifrons* (||), *H. ampullatus* (/), *M. europaeus* (\), *T. shepherdii* and *M. traversii* (grey). *M. traversii* is only known from remains and has never been seen ‘in flesh’ or alive.

Suborder MYSTICETI: Baleen Whales

Family BALAENIDAE

Balaena mysticetus	Bowhead whale	29
Eubalaena australis	Southern right whale	29
Eubalaena glacialis	North Atlantic right whale	29
Eubalaena japonica	North Pacific right whale	29

Figure 29: Distribution of *Caperea* (=), *E. australis* (||), *E. japonica* (\), *B. mysticetus* (/) and *E. glacialis* (grey).
Family NEOBALAENIDAE

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caperea marginata</td>
<td>Pygmy right whale</td>
<td>29</td>
</tr>
</tbody>
</table>

Family BALAENOPTERIDAE

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balaenoptera acutorostrata</td>
<td>Common minke whale</td>
<td>30</td>
</tr>
<tr>
<td>Balaenoptera bonaerensis</td>
<td>Antarctic minke whale</td>
<td>30</td>
</tr>
<tr>
<td>Balaenoptera borealis</td>
<td>Sei whale</td>
<td>30</td>
</tr>
<tr>
<td>Balaenoptera edeni</td>
<td>Bryde’s whale</td>
<td>30</td>
</tr>
<tr>
<td>Balaenoptera musculus</td>
<td>Blue whale</td>
<td>30</td>
</tr>
<tr>
<td>Balaenoptera physalus</td>
<td>Fin whale</td>
<td>30</td>
</tr>
<tr>
<td>Megaptera novaeangliae</td>
<td>Humpback whale</td>
<td>30</td>
</tr>
</tbody>
</table>

Family ESCHRICHTIIDAE

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eschrichtius robustus</td>
<td>Gray whale</td>
</tr>
</tbody>
</table>

Figure 30: Distribution of *B. musculus*, *B. physalus* and *M. novaeangliae* (=) (note: only *B. physalus* is found throughout the Mediterranean); *B. edeni* (\), *B. bonaerensis* (grey; south of 7°S), *E. robustus* (grey; only in the northern hemisphere); *B. borealis* and *B. acutorostrata* (||). *B. acutorostrata* has a northern hemisphere population and a southern (dwarf) population.

Order CARNIVORA: Carnivores (marine)

Suborder PINNIPEDIA: Seals & Sea Lions

Family PHOCIDAE (true, earless, hair seals)

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystophora cristata</td>
<td>Hooded seal {1}</td>
<td>32</td>
</tr>
<tr>
<td>Erignathus barbatus</td>
<td>Bearded seal {2}</td>
<td>31</td>
</tr>
<tr>
<td>Halichoerus grypus</td>
<td>Gray seal {3}</td>
<td>32</td>
</tr>
<tr>
<td>Histriophoca fasciata</td>
<td>Ribbon seal {4}</td>
<td>32</td>
</tr>
<tr>
<td>Hydrurga leptonyx</td>
<td>Leopard seal {5}</td>
<td>32</td>
</tr>
<tr>
<td>Leptonychotes weddellii</td>
<td>Weddell seal {6}</td>
<td>32</td>
</tr>
<tr>
<td>Lobodon carcinophagus</td>
<td>Crabeater seal {7}</td>
<td>32</td>
</tr>
<tr>
<td>Mirounga angustirostris</td>
<td>Northern elephant seal {8}</td>
<td>32</td>
</tr>
<tr>
<td>Mirounga leonina</td>
<td>Southern elephant seal {9}</td>
<td>31</td>
</tr>
<tr>
<td>Monachus monachs</td>
<td>Mediterranean monk seal {10}</td>
<td>31</td>
</tr>
<tr>
<td>Monachus schauinslandi</td>
<td>Hawaiian monk seal {11}</td>
<td>31</td>
</tr>
<tr>
<td>Monachus tropicalis†</td>
<td>Caribbean monk seal {12}†</td>
<td>31</td>
</tr>
<tr>
<td>Ommatophoca rossii</td>
<td>Ross seal {13}</td>
<td>32</td>
</tr>
<tr>
<td>Phoca groenlandica</td>
<td>Harp seal {14}</td>
<td>31</td>
</tr>
<tr>
<td>Phoca largha</td>
<td>Spotted seal {15}</td>
<td>31</td>
</tr>
<tr>
<td>Phoca vitulina</td>
<td>Harbor seal {16}</td>
<td>31</td>
</tr>
<tr>
<td>Pusa caspica</td>
<td>Caspian seal {17}</td>
<td>32</td>
</tr>
<tr>
<td>Pusa hispida</td>
<td>Ringed seal {18}</td>
<td>32</td>
</tr>
<tr>
<td>Pusa sibirica</td>
<td>Baikal seal {19}</td>
<td>32</td>
</tr>
</tbody>
</table>

†The Caribbean monk seal was last sighted in 1952 and is considered extinct.

Figure 31: Distribution of true seals: *E. barbatus* (||), *M. leonina* (grey, 9), *M. monachs* (grey, 10), *M. schauinslandi* (grey, 11), *Ph. groenlandica* (||), *Ph. vitulina* (dark grey line), *Ph. largha* (\).
Figure 32: Distribution of true seals: *C. cristata* (||), *H. fasciata* (\), *H. grypus* (/), *M. angustirostris* (grey, 8), *P. caspica* (grey, 17), *P. hispida* (grey, 18), *P. sibirica* (grey, 19). Around Antarctica (=): *H. leptonyx*, *L. carcinophagus*, *O. rossii*.

Family OTARIIDAE (eared seals)

<table>
<thead>
<tr>
<th>Species</th>
<th>Range</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arctocephalus australis</td>
<td>South American fur seal {1}</td>
<td>33</td>
</tr>
<tr>
<td>Arctocephalus forsteri</td>
<td>New Zealand fur seal {2}</td>
<td>33</td>
</tr>
<tr>
<td>Arctocephalus galapagoensis</td>
<td>Galapagos fur seal {3}</td>
<td>33</td>
</tr>
<tr>
<td>Arctocephalus gazella</td>
<td>Antarctic fur seal {4}</td>
<td>33</td>
</tr>
<tr>
<td>Arctocephalus philippi</td>
<td>Juan Fernandez fur seal {5}</td>
<td>33</td>
</tr>
<tr>
<td>Arctocephalus pusillus</td>
<td>South African & Australian fur seals {6}</td>
<td>33</td>
</tr>
<tr>
<td>Arctocephalus townsendi</td>
<td>Guadalupe fur seal {7}</td>
<td>33</td>
</tr>
<tr>
<td>Arctocephalus tropicalis</td>
<td>Subantarctic fur seal {8}</td>
<td>33</td>
</tr>
<tr>
<td>Callorhinus ursinus</td>
<td>Northern fur seal {9}</td>
<td>33</td>
</tr>
<tr>
<td>Eumetopias jubatus</td>
<td>Steller sea lion {10}</td>
<td>33</td>
</tr>
<tr>
<td>Neophoca cinerea</td>
<td>Australian sea lion {11}</td>
<td>33</td>
</tr>
<tr>
<td>Otaria byronia</td>
<td>South American sea lion {12}</td>
<td>33</td>
</tr>
<tr>
<td>Phocarctos hookeri</td>
<td>New Zealand sea lion {13}</td>
<td>33</td>
</tr>
<tr>
<td>Zalophus californianus</td>
<td>California & Galapagos sea lions {14}</td>
<td>33</td>
</tr>
</tbody>
</table>

Figure 33: Distribution of eared seals. Numbers with arrows belong to shaded ranges. Numbers without arrows identify breeding sites on islands.

Family ODOBENIDAE

<table>
<thead>
<tr>
<th>Species</th>
<th>Range</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odobenus rosmarus</td>
<td>Walrus</td>
<td>34</td>
</tr>
</tbody>
</table>

Family MUSTELIDAE (marine)

<table>
<thead>
<tr>
<th>Species</th>
<th>Range</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lutra felina</td>
<td>Marine otter</td>
<td>34</td>
</tr>
<tr>
<td>Enhydra lutris</td>
<td>Sea otter</td>
<td>34</td>
</tr>
</tbody>
</table>

Family URSIDAE (marine)

<table>
<thead>
<tr>
<th>Species</th>
<th>Range</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ursus maritimus</td>
<td>Polar bear</td>
<td>34</td>
</tr>
</tbody>
</table>

Order SIRENIA: Sea Cows

Family TRICHECHIDAE

<table>
<thead>
<tr>
<th>Species</th>
<th>Range</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichechus inunguis</td>
<td>Amazonian manatee</td>
<td>34</td>
</tr>
<tr>
<td>Trichechus senegalensis</td>
<td>West African manatee</td>
<td>34</td>
</tr>
<tr>
<td>Trichechus manatus</td>
<td>West Indian manatee</td>
<td>34</td>
</tr>
<tr>
<td>Trichechus manatus latirostrus</td>
<td>Florida manatee</td>
<td>34</td>
</tr>
</tbody>
</table>
Family DUGONGIDAE

<table>
<thead>
<tr>
<th>Genus</th>
<th>Species</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dugong dugon</td>
<td>Dugong</td>
<td>34</td>
</tr>
<tr>
<td>Hydrodamalis gigas †</td>
<td>Steller's sea cow †</td>
<td>34</td>
</tr>
</tbody>
</table>

†Steller’s sea cow used to live in the Bering Sea, but has been extinct since the 18th century.

Figure 34: Distribution of *O. rosmarus* (\|), *U. maritimus* (\/), *Mustelidae* and *Sirenia*.

6. Marine Mammal Acoustics

Ocean water conducts light very poorly but sound very well. => Marine mammals rely primarily on their acoustic sense for communication, social interaction, navigation and foraging. Odontocetes have an active echolocation system aiding navigation and foraging.

a. Marine Mammal Sounds

All marine mammals emit sound that is produced internally. Other sounds, that may also take a social or communicative role, are generated when an animal strikes an object or the water surface.

Odontocete Sounds:
- generated within the nasal system, not the larynx
- can be classified into 3 categories: tonal whistles, burst-pulse sounds and echolocation clicks
- Within the same species, there exist geographic differences in sound characteristics where populations don’t mix.

Mysticete Sounds:
- sound production mechanism unclear
- 2 categories: calls and songs
 - *Calls* have been categorized into simple calls (low $f < 1$kHz, narrow band, frequency and amplitude modulated), complex calls (broadband, 500-5000Hz, f and amplitude modulated), grunts & knocks (<0.1s duration, 100-1000Hz), and clicks & pulses (short duration < 2ms, 3-30kHz) [5].
 - *Songs* have been recorded from humpback, bowhead, blue and fin whales.
- Humpback song can be broken down into themes, which consist of repetitions of phrases, which are made up of patterns of units (with energy up to 30kHz).

Pinniped Sounds:
- occur in air and under water

Whistles and burst-pulse sounds have social function.

Some odontocetes do not whistle, e.g. Phocoenidae, Cephalorhynchus sp., Kogia sp., Physeter macrocephalus.

Whistles have fundamental frequency < 20-30kHz plus higher harmonics.

Whistles have directional emission pattern, in particular at high f.

Whistles may be categorized acc. to the shape of the fundamental frequency with time: constant frequency, upsweep, downsweep, concave (hill), convex (valley), sinusoidal.

Burst-pulse sounds are series of broadband pulses with substantial ultrasonic energy.

Echolocation clicks are broadband; mostly in the ultrasonic range.

Burst-pulse sounds have lower source level and lower interclick interval than echolocation click trains.

Both have highly directional beam-pattern.
- are often described by onomatopoeic words: grunts, snorts, buzzes, barks, yelps, roars, groans, creaks, growls, whinnies, clicks etc. [3; 44]

<table>
<thead>
<tr>
<th>Frequency [Hz]</th>
<th>SPL [dB re 1\mu Pa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>140</td>
</tr>
<tr>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td>1k</td>
<td>100</td>
</tr>
<tr>
<td>10k</td>
<td>80</td>
</tr>
<tr>
<td>100k</td>
<td>60</td>
</tr>
</tbody>
</table>

Figure 35: Frequency bands of marine mammal sounds incl. echolocation [13; 40; 44].

b. Marine Mammal Hearing

Audiograms: - graphs showing hearing threshold of pure tones as a function of frequency
- have been measured from only about 20 marine mammal species, and only few individuals
- audiogram variability on an individual (let alone species or genus) level is barely understood
- ‘threshold’ is a statistical quantity, e.g. (dep. on the method used) the level at which the tone was heard 50% of the time

Marine mammal audiograms, grouped into families, are shown in Figure 36. Published audiograms were assembled [11; 21; 38; 44] and interpolated for the centre frequencies of 1/3 octave bands between 40Hz and 200kHz. Within each family, the lowest threshold of all species and individuals was plotted at each frequency. There are no underwater audiograms of polar bears, sea otters, sperm whales and baleen whales. It is expected that their frequencies of best sensitivity overlap to some degree with the frequencies of their calls. Other indicators for what these animals can hear come from controlled exposure experiments looking for responses of animals to sound. Anatomical studies of baleen ears have suggested good hearing sensitivity between 10Hz and 30kHz. At the low-frequency end, sound detection by baleen whales might often be ambient noise limited rather than audiogram limited.

Marine mammal audiograms exhibit a similar U-shape:
- at low f, sensitivity improves as $\sim 10\text{dB/octave}$
- best sensitivity is between 30 dB re $1\mu\text{Pa}$ (odontocetes) and 70 dB re $1\mu\text{Pa}$ (pinnipeds), with the exception of the Gervais’ beaked whale audiogram, the current estimate of which has a much higher threshold
- at high f, sensitivity drops fast: $>100\text{dB/octave}$

Figure 36: Underwater audiograms of marine mammals, showing the minimum thresholds over all species belonging to the same family.

Temporal auditory summation: Sensitivity decreases, i.e. audiogram thresholds increase, if the signal duration drops below the integration time constant of the auditory system. Depending on species and frequency, the integration time constant is of the order of $0.001 – 0.1\text{s}$.
7. Effects of Noise on Marine Mammals

The effects of noise and the ranges over which they happen depend on the acoustic characteristics of the noise (level, spectrum, duration, rise time, duty cycle etc.), the sound propagation environment, and the animal under consideration.

Figure 37 sketches the relative extents of some of the possible zones of influence.

a. Noise Audibility

Noise levels decrease with range due to propagation losses. Audibility is limited by the noise dropping either below the animal audiogram or below ambient noise levels. One way of estimating the zone of audibility is as follows [17]:

1. Model sound propagation of the noise.
2. At a receiver grid in space (e.g. easting, northing, depth) compute critical band levels of the noise by integrating its power density spectrum into a series of bands of the width of the animal’s critical bands. In the absence of critical band or critical ratio data, 1/3 octave bands are commonly used.
3. Compute critical band levels of ambient noise.
4. For each band, take the maximum of the audiogram threshold and the ambient noise SPL; this is the audibility-limiting spectrum.
5. Subtract these audibility-limiting band levels from the noise band levels at all ranges and depths.
6. If the difference is > 0 in any band, then this band is deemed audible at this location.

b. Behavioural Responses

The zone of behavioural response is mostly going to be smaller than the zone of audibility, as an animal is not likely to respond to a sound that is just detectable. Yet, ranges over which behavioural responses have been observed, can be quite large (10s of km [18]) in particular for low-frequency sounds in deep water and animals capable of detecting low f. Summaries and reviews of observed behavioural responses can be found in [39; 44; 48]. Indicators of ‘disturbance’ include changes in swim direction and speed, dive duration, surfacing duration and interval, respiration (blow rate), movement towards or away from the noise, and changes in contextual and acoustic behaviour etc. Whether an animal reacts to a sound it hears depends on a number of factors including prior exposure (habituation vs. sensitization), current behavioural state, age, gender and health. The percentage of a population that is likely to respond to a noise is a statistical quantity. E.g., the National Marine Fisheries Service (NMFS) [8] has recently used a dose-response curve (also called risk function) to estimate the probability of response to mid-frequency sonar. Half of a population was expected to respond at 165 dB re 1\mu Pa, with more animals responding to louder sonar signals and fewer animals to quieter sonar signals.

Figure 38: Curve used by NMFS to assess the likelihood of impact from mid-frequency sonar.

Behavioural analyses should be multivariate, considering the full range of metrics appropriate for the sound source (e.g., SPLrms, SPL\text{peak}, SEL, signal-to-noise ratio) and the full range of behavioural and contextual variables.
c. Masking

Man-made noise can interfere with marine mammal social signals, echolocation, predator sounds, prey sounds and environmental sounds (e.g. the sound of surf) that animals might listen to.

Masking is
• the process by which the threshold of hearing for one sound is raised by the presence of another (masking) sound;
• the amount M by which the threshold of hearing for one sound is raised by the presence of another (masking) sound, expressed in dB:
 \[M = SL_n - SL_0 \text{ [dB]} \],
 where \(SL_0 \): signal level @ detection threshold in the absence of noise,
 \(SL_n \): signal level @ detection threshold in the presence of noise.

Critical Ratio:
Consider broadband white noise masking a pure tone. If \(PSD_n \) is the power spectral density [intensity per Hz] of the noise and \(I_t \) the tone intensity at threshold in the noise, then

\[CR = 10 \cdot \log_{10} \left(\frac{I_t}{PSD_n} \right) \] is the critical ratio.

Critical Band:
• consider the auditory system a bank of bandpass filters
• mostly noise energy in the filter surrounding the tone will be effective at masking

Fletcher’s Equal-Power-Assumption [22]: At the masked hearing threshold, the tone intensity equals the noise intensity inside the corresponding critical band \(\Delta f \):
\[I_t = PSD_n \cdot \Delta f \]

The critical band can be computed from critical ratios:
\[\Delta f = 10^{CR/10} \]

Masking [14; 16]
• depends on the spectral and temporal characteristics of signal and noise;
• is reduced if signal and noise are separated in time, frequency, or direction (space);

• can occur if the noise happens shortly before or after the signal (forward and backward masking);
• is reduced if the noise is amplitude modulated over many \(f \)-bands (comodulation masking release);
• is reduced if there are gaps in the noise and/or the signal is repetitive or of long duration (multiple looks model);
• might be reduced by anti-masking strategies (e.g. increasing call level, shifting \(f \), repetition [14]).

The zone of masking can maximally be as large as the zone of audibility, as a faint noise might mask a faint signal. Mostly, the zone will be less, because animals can detect signals at levels a few dB below noise, and because of frequency discrimination, temporal discrimination and directional hearing abilities of the marine mammal auditory system. There are different degrees of masking: At a low signal-to-noise ratio (\(snr \)), a signal might just be audible in the noise; a higher \(snr \) is needed for the signal to be discriminated or recognized; and an even higher \(snr \) is associated with comfortable communication. Behavioural experiments to measure the masking of beluga whale calls by ship noise [14; 16] have been used to develop software models for masking, including common signal detection algorithms and neural networks [10; 20].

d. Auditory Threshold Shift

M-weighting [48]:
• emphasizes the frequency band where acoustic exposures to high-amplitude noise can have auditory effects
• curves are wider than the bandwidth of best sensitivity as indicated in audiograms
• To compute M-weighted \(SEL \) (\(SEL-M \)), filter the noise spectrum with the appropriate M-weighting curve before integrating energy over all frequencies.
Marine mammals were grouped into 5 functional hearing groups [48]:
- **low-frequency cetaceans**: Balaena, Caperea, Eschrichtius, Megaptera, Balaenoptera
- **mid-frequency cetaceans**: Steno, Sousa, Sotalia, Tursiops, Stenella, Delphinus, Lagenodelphis, Lagenorhynchus, Lissodelphis, Grampus, Peponocephala, Feresa, Pseudorca, Orcinus, Globicephala, Orcaella, Physeter, Delphinapterus, Monodon, Ziphius, Berardius, Tasmacetus, Hyperoodon, Mesoplodon
- **high-frequency cetaceans**: Phocoena, Neophocaena, Phocoenoides, Platanista, Inia, Kogia, Lipotes, Pontoporia, Cephalorhynchus
- **pinnipeds in water**: all species
- **pinnipeds in air**: all species

\[
M(f) = 20 \log_{10} \left(\frac{R(f)}{\max(R(f))} \right)
\]

where

\[
R(f) = \frac{f_{\text{high}}^2 f^2}{(f_{\text{high}}^2 + f^2)(f_{\text{low}}^2 + f^2)}
\]

<table>
<thead>
<tr>
<th>Function</th>
<th>Low Frequency</th>
<th>High Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF Cet.</td>
<td>7 Hz</td>
<td>22 kHz</td>
</tr>
<tr>
<td>MF Cet.</td>
<td>150 Hz</td>
<td>160 kHz</td>
</tr>
<tr>
<td>HF Cet.</td>
<td>200 Hz</td>
<td>180 kHz</td>
</tr>
<tr>
<td>Pin. in water</td>
<td>75 Hz</td>
<td>75 kHz</td>
</tr>
</tbody>
</table>

Temporary Threshold Shift (TTS):
At some level and duration, sound can cause hair cells of the inner ear to fatigue, yielding an increase in auditory threshold by an amount called the temporary threshold shift. The amount of TTS depends on the noise level, rise time, duration, duty cycle, spectral characteristics etc. After some quiet time (minutes – days), hearing returns to normal. TTS has been measured in a few individual marine mammals. Reviewing pre-2007 data, Southall et al. [48] expected TTS onset in LF, MF and HF cetaceans at 224 dB re 1 µPa SPL_{pk} or 183 dB re 1 µPa^2 SEL M-weighted, whichever level was reached first. For pinnipeds in water, TTS onset was expected at 212 dB re 1 µPa SPL_{pk} or 171 dB re 1 µPa^2 SEL-M. Since then, TTS has been shown in a HF cetacean at 200 dB re 1 µPa SPL_{pk} and 164 dB re 1 µPa^2 SEL unweighted [30].

Permanent Threshold Shift (PTS):
If hearing does not fully return to normal after noise exposure, the remaining threshold shift is called a permanent threshold shift. PTS is considered auditory injury. Noise-induced PTS has not been measured in marine mammals. To estimate at what level PTS might occur, marine mammal TTS data were used in combination with TTS growth rates (as a function of noise level) from terrestrial mammals [48]. Peak-SPL and M-weighted SEL values were given; the one that is reached first should be used for impact assessment.

<table>
<thead>
<tr>
<th>Function</th>
<th>Single + multiple pulses</th>
<th>Nonpulses</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF Cet. + MF Cet. + HF Cet.</td>
<td>230 dB re 1 µPa SPL_{pk}</td>
<td>230 dB re 1 µPa SPL_{pk}</td>
</tr>
<tr>
<td>MF Cet.</td>
<td>198 dB re 1 µPa^2 SEL-M</td>
<td>215 dB re 1 µPa^2 SEL-M</td>
</tr>
<tr>
<td>Pinn. in water</td>
<td>218 dB re 1 µPa SPL_{pk}</td>
<td>218 dB re 1 µPa^2 SEL-M</td>
</tr>
<tr>
<td></td>
<td>186 dB re 1 µPa^2 SEL-M</td>
<td>203 dB re 1 µPa^2 SEL-M</td>
</tr>
</tbody>
</table>

Noise Classes:
To predict auditory impact, noise sources have been grouped [48]:
- **single pulses**: one event per 24h; > 3dB difference between measured levels using impulse versus equivalent-continuous time constant (setting on sound level meter); e.g. explosion, single airgun, single pile strike, single sonar ping
- **multiple pulses**: >1 emission within 24h; >3dB difference between measured levels using impulse versus equivalent-continuous time constant; e.g. seismic surveying, pile driving
- **nonpulses**: 1 or more emissions within 24h; <3dB difference between measured levels using impulse versus equivalent-continuous time constant; e.g. ship noise, drilling, certain sonar systems, pingers

e. **Non-Auditory Physiological Effects**

Other systems potentially affected by noise include the vestibular system, reproductive system and nervous system. Noise might cause concussive effects, physical damage to tissues and organs (in particular gas-filled), and cavitation (bubble formation). Data on damage to non-auditory tissues, organs and systems don’t exist, but levels will have to be above those tested in TTS experiments.

Stress is a physiological response that involves the release of the hormone adrenalin, which increases heart rate, gas exchange, acuity and an increase in blood flow to the brain and muscles for a fight-or-flight response. Stress responses are intended to improve survival in the face of immediate threat, however, repetitive or prolonged stress can negatively affect health in the long run. Chronic stress in humans can cause coronary disease, immune problems, anxiety, depression, cognitive and learning difficulties, and infertility. The onset of stress might correspond to fairly low noise levels that induce a behavioural disturbance or masking. Stress might be a direct result of noise, e.g. if an unknown noise is detected, or an indirect result of noise causing, e.g., masking.

The different types of noise effects can be linked, e.g., a temporary shift in hearing threshold will affect the audibility of signals (e.g. of conspecific calls) and thus alter or prevent the ‘normal’ behavioural response to such signals. Or, noise received by a diving animal might induce stress leading to a so-called fight-or-flight response involving rapid surfacing which can cause decompression sickness and injury, and ultimately death.

f. **Chronic Noise Effects**

While it is quite feasible to model cumulative sound exposure [19], the effects of cumulative sound exposure and the manner in which repeated exposure gets accumulated by the animal are not known yet. Agencies around the world tend to regulate acute noise exposure (e.g. from seismic surveys or naval sonar). Ongoing sound exposure (e.g. from shipping) remains largely unregulated.

g. **Biological Significance**

Determining whether and how acoustic impact affects the survival of a population is extremely difficult. If a certain percentage of a population receives a certain amount of PTS, could this lead to the population’s decline? Will it matter if a seismic survey deflects migration routes?

The Population Consequences of Acoustic Disturbance (PCAD) model [37] provides a conceptual framework for linking acoustic disturbance to population effects. The bracketed numbers indicate how easily the variables can be measured (3: easy, 0: difficult) and how well the 4 transfer functions F are known (3: well known, 0: unknown). Bioenergetic measurements and models might aid with determining these transfer functions [6].

![Population Consequences of Acoustic Disturbance (PCAD) model](image)

Figure 40: Population Consequences of Acoustic Disturbance (PCAD) model.
h. Mitigation

- Modifying the source
 - choosing alternate equipment and technology
 - reducing source level
 - changing spectral characteristics
- Modifying the timing of activities
 - time of day
 - outside of season of marine mammal presence
- Modifying the geographic location
- Modifying operational parameters
 - ramping up (not proven that animals will actually move away if sound source ramps up)
 - minimizing duty cycle
 - limiting speed of boats
- Installing mitigation equipment, e.g. bubble screens around pile driving
- Implementing mitigation procedures
 - visual or passive acoustic monitoring of marine mammals
 - low-power and shut-down (safety) zones

i. Cumulative Stressors

It is difficult to rank the impact of noise with regards to other stressors on marine animals. Depending on the species, geographic location and time of year, non-acoustic ‘stressors’ affecting marine mammals result from harvesting (intended catch), culling, fisheries bycatch, entanglement, ocean debris, ship strikes, chemical pollution, ocean acidification, habitat degradation, prey depletion (e.g. by overfishing or environmental factors), and climate change. Isolating and ranking these stressors for management purposes is mostly impossible. Ideally, noise would be regulated together with other stressors. It seems reasonable to assume that an animal that is already stressed by chemical pollution and food depletion would find it harder to cope with additional noise pollution, or vice versa, an animal that is frequently exposed to raised background noise might already be ‘too stressed’ to effectively cope with additional non-acoustic stressors.

Part C: Noise Effects on Animals other than Mammals

Recent results of studies of noise effects on marine animals including non-mammalian species can be found in [27].

8. Fish

There are > 30,000 species of fish, only a small proportion of which have been addressed in bioacoustic investigations. In 2008, a compendium was published on fish bioacoustics [50]. Threats to the survival of species of fish include over-fishing, habitat degradation, chemical pollution and noise.

a. Hearing in Fish

All fish studied to-date can hear. The inner ear of fish resembles an accelerometer. When a sound wave impinges on a fish, a dense mass, the otolith, moves relative to the rest of the fish, and this motion is measured by sensory hair cells. The ear is sensitive to particle motion. Fish with swim bladders close to the ear are also sensitive to acoustic pressure, as the sound pressure excites the gas bladder, which reradiates an acoustic wave, the particle motion of which is detected by the ear. In general, hearing sensitivity is best between 30 – 1000 Hz. However, some species can detect infrasound, some can detect ultrasound [41].

b. Behavioural Responses

Documented behavioural responses include avoidance of vessels and seismic airguns [reviewed in [47]]. Sonars did not produce a response, yet predator sounds (killer whales) did [9]. Startle responses did not correlate with audiograms [29], and it was concluded that behavioural responses depend not only on the noise characteristics, but also on context (e.g. location, temperature, physiological state, age, body size, school size).
c. Masking

Over 800 species of fish are known to emit sound, primarily on spawning grounds. Fish also produce sound during territorial fights, when competing for food or when attacked by a predator [47]. Noise can potentially mask communication, predator and prey sounds, however, this has not been studied in detail.

d. Hearing Loss

Damage to hair cells has been observed after exposure to seismic airguns [33]. Temporary threshold shift has been measured after exposure to various types of noise [reviewed in [42]].

e. Physiological Effects

There is anecdotal evidence of fish mortality around pile driving, however data on what noise characteristics cause what type of damage at what level is unavailable. Stress as measured by an increase in the hormone cortisol and an increase in heart rate has been documented [reviewed in [47]].

f. Chronic Effects & Biological Significance

Long-term effects might include growth-retardation and a reduction in reproductive success, although this has not yet been documented [7; 53].

References

We greatly appreciate your feedback. If you find any mistakes, please email info@jasco.com.