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Abstract - This paper offers a mathematical model of low-frequency harmonic sound propagation in the ocean
with 2D and 3D inhomogeneities. The sound speed, density and bottom relief slowly vary with horizontal coor-
dinates and arbitrarily with depth, including an inhomogeneous bottom. A one-way (parabolic) approximation
is derived, and a numerical algorithm for its implementation is offered, ensuring any given accuracy of calcu-
lations for any given interval of grazing angles of local normal modes (superwide-angle property) for any

parameters of the medium.

As a first step, let us consider the technique of addi-
tive factoring for the acoustics equations in a stationary
liquid medium with two-dimensional inhomogeneities.

Harmonic sound propagation in a three-dimensional
liquid half-space translationally invariable on the Car-
tesian y coordinate is described by the following system
of differential equations (the first two are linearized
Newton equations and the third is a linearized continu-~
ity equation) [1], N

Dx 0 -iop P fx

D, —iop 0 v, 1= L
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(x,z) € {—oo,2) X (0,0}
and by the condition of limiting absorption

ImC< 0= |px, 2)|<M, (x,z)€ (=00, o)X (0, o).

Here, p is the acoustical pressure, v, and v, are the Car-
tesian acoustical velocity components, f, and f, are the
Cartesian components of the external force density, Vis
the external volume velocity density, p is the medium’s
density, C is medium’s sound speed (all these quantities
are functions of both cartesian coordinates x and y), and
o is the cyclic frequency. D, and D, are the partial
derivatives with respect to space coordinates, i is the
imaginary unity, and M is a number. We transform (1)
by premultiplying these equations by the nonsingular
matrix g
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This yields a system of equations involving only acous-
tical pressure and the horizontal component of acousti-
cal velocity
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P(x) =p(x.2), Vdx)=vilx, 2),
Rv = p(x, 2)wi(x, 2), (2)
Bpx) = (p7'(x, 2Cx, 2)
~D((iw)*p(x, 2)) D )p(x, 2),

£.(x) =fix, 2), w(x)=V(x, z) -~ D {iop(x, 2)) 'f,(x. 2).

Operator equations (2) are the basis-invariant form of
guided-wave equations [2]: assuming for the sake of
simplicity R = [ and taking into account that on the
basis of local normal modes ¢,(x, z) the operator [} has
the diagonal form

Be) = dmC20d (), &) = row (3,0},
Cx)= di?g {Ch

where C, denotes the phase velocity of the /th local nor-
mal mode, we obtain for the amplitudes of the local

i .-l
normal modes of pressure a(x) = & (x)p(x) and veloc-

.1
ity b{x) = @ (x)v(x) the equations:

Dxal(x) - lmbl(x) = _Z'Y;k(x)ak(x)v
k

D,bx) - ioC; (Dax) = =Y 1,()b®),
k
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! -
where 1, = [®@ (x)(D,D(x))], are the coefficients of
coupling of the local normal modes.

Let us now reformulate (2) in the manner of the
Wentzel-Kramer—Brillouin method or the additive fac-
toring of the solation to the form of waves propagating
to the left and right. Let ns assume that outside the
interval of the horizontal coordinate x € (a, b) our
waveguide is layered and all sources are inside this
interval. Introducing the new local amplitudes of waves
propagating to the left and right:

Y Y| |
Zx) -ZE)

Sw= (JR@®B&JRE®)
Y@ = JSOIRD » Z&) = JRE S,

and taking into account that only outgoing waves may
exist outside of the interval (a, b), we obtain by the pro-
cess of additive factoring [3, 4] the foliowing system of
equations:
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+ 12{Z7 () (D.L(x)) = Y DY ()1},
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It can be solved by the Gauss—Zeidel iterations [5, 6]:
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u, =P ~Un,_, +F", u; =Q(-Lu; +F) (5

converging, if [|P-'LJQ-'Lj| < 1, where ||-|| stands for
the norm. For p and C slowly varying with x, the oper-
~ ators U and I are small; and, for well-defined Cauchy
operators P and {J, the likelihood of convergence of
the process (5) is very high. From (5), we can see that
the operators L and U describe the backscattering pro-
cess, whereas the operators [P and (D describe propaga-
tion (terms £i®S) and transmission through the hori-
zontal inhomogeneities.

Assuming now the zero field as the zero order
approximation, we obtain for the first order approxima-
tion of one-way waves in positive and negative direc-

tions u, and u] the equations:
Puj =F+, Qu; =F-.

In the basis of local normal modes, they assume the
known form of one-way guided waves (see [2])

+ . ~1 +
DICI “I(I)Cl Cl

=S (CH+C) 2JCC) + {07F'Y,
k .

D.c; +ioC;'c,
_ B o
= "Z'Yfk(cﬁcfc) (2JCCy  + {®7'F Y,
k

Assuming the coupling coefficients vy, to be rapidly
diminishing with the difference of numbers of local
normal modes [/ - &, and, therefore, letting (see [2})

(C+Cy / (2,/(:,0,5)*1 =1

thus neglecting the assumption that the transmission
through horizontal inhomogeneities is equal to unity,
we obtain in operator form the abstract pseudodifferen-
tial parabolic equations (PEs)

D] —ioSu] =F*, D.u; +i0Sxu; =F. (6)

These equations form a basis to obtain all known PEs
by the technique employed to approximate S, and to
solve the resulting approximated differential equation.

It should be noted that if the operator B is selfad-
joint, the factoring process (3), (4) conserves the flow
form of energy

p*v =Yl + u))*(Z(u* — u))
= (@)*ut — (u)*u.

Moreover, this factoring provides the exact reciprocity

of the first order' equations for right- and left-going
3

waves ‘

E:Du:r = F+
and
Qu; =F.

However, in practical calculations, we may sacrifice
some accuracy in order to diminish computational
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time. If sound pressure alone is needed, then the sim-
plicity of the relationship

p=ut+u

make interesting the factoring

+

p u

v

k]

n I
T 7® -7 @

S = 4 Rx) BXx),
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* Equations (4) take then the form
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which again yields (6), if we neglect the difference of
the transmission coefficient from unity. The solutions
of these equations satisfy the reciprocity principle.

In the case of a three-dimensional cylindrically
symmetrical ocean with the source located on the sym-
metry axis, equations (1) take the form

f

X iy
W

F

D
DZ
—iwp™'C? D, ¥'Drl|| Vv

r 0 =iop | p 0
~iop O v, = £27780) |

v2r'(»

Z

(r, 2) & (0, o) X (0, H)

and may be treated as the previous problem by substitut-
ing r = exp(x), w = exp(x)v;, and eliminating v, for r>0

Dp| = 0 ioR || p|.
Dy ivexp2x)B 0O w
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After returning to r the one-way equation similar to (6)
will have the form

Dp -ioSEp +r/2=0

or

D4 -ieSHq =0 7

Assuming the waveguide to be layered in the vicin-
ity of the source up to the distances where the simplest
asymptotic expansion of Hankel function

H((,”((nsr) = (2/inwsr) 2 exp (iasr)

becomes valid, and taking into account that it satisfies (7),
we obtain the initial condition for q as

q(0) = (@S /2ni)w(z). (8)
Equations (7) and (8) fully determine the field of the

wave outgoing from the source.

To solve (6) numericaily, we use the exponential fit-
ting algorithm [7, 8]:

~ u(x+ k) =exp [iwAS(x)ut(x).
The action of the propagation factor operator
E = expliwhS(x)]

can be calculated with any given accuracy with use of
the rational-fraction approximations [9] if

) = F,(M/G,(A)

(F,, G,, are the polynomials of degree 7, m) in the vicin-
ity of the spectrum of the operator S, then the Riesz
definition of the function f of the operator T

£(T) = @iy [fN(T = Al d,
r

where [l is the identity operator, the integration path I"
encircles the spectrum of the operator [ leaving him on
the left, and T is assumed such that the integral does
converge (see [10]), leading us to the conclusion that

AS) =F,(SXG.S).

~We construct the appropriate approximation to

exp(if/h) with the known Padé approximations {11]
of the exponent

exp(h) = (M,(A%) + AN, (A°))

% (M.(A) =AN,02) " +E,(0)
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Comparison of sound field calculations by the pseudodifferential parabolic equation technique {solid line} and by the normal mode
method (). {a) Deep ocean: Atlantic profile, ocean depth 5.5879 km, frequency 25 Hz, duct axis depth 1.015 km, source depth
0.2539 km, and receiver depth 0.8655 km. (b) Shallow sea: depth 0.24 km, frequency 100 Hz, duct axis depth 0.12 km, source depth

0.03 km, and receiver depth 0.09 km.
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and of the square root
A2 = FONG M) + H, (M),

where M,, N,, F,,, and G, are the polynomials with
real coefficients, computed by recurrence, and E,, and
H, are the approximation errors known to fade with
increasing m and » in the complex plane with the cut on
the negative side of the real axes. Combining those
approximations, we get

exp(ihi"®)
= (G, (M, (~H"2) + ihF,QON(~B"L))
X (G, (WM, (~h*%) — ikF, (MN~HA) ™

k=n/2+m

= JI G-wem) -pn™,

k=1

where 1, are the roots of the denominator of the above
fraction and p# are their complex conjugates. We have
computed W, for some m, n, and k. All of them turned
out to lie in the fourth quadrant of the complex plane far
enough from the spectrum of $? lying in the first and
second quadrants, which implies the stability of the
action of the operator [E. The error of the approximation
in (9) decreases with increasing n and m in the whole
complex planc without the negative half of the real
axes, but it is important to approximate the region of
spectram of $2, corresponding to propagating local
normal modes, lying in the vicinity of the point (1,0) in
the upper half-plane. For example, in the local normal
modes with Brillouin angles up to 60°, m=4, n=4, and
h = 4 give a phase error less than 5 X 106 rad, thus
enabling the calculation of underwater sound propaga-
tion to a distance of 9000 km with frequencies up to
100 Hz with an absolute phase error less then #/2.

Let us transform the approximation of (9) of the
operator [

k=n/2+m
TT (RB —pze) (RB-pm)~
k=1 (10)

K=n/2+m

- I ¢ -2m@)(B-KRD R

k=1

It can be seen from (10) that, to act by the operator [, it
is sufficient to solve K boundary problems of the type
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(P, DDC (%, 2) — P (%, 2)

~D.((i0)*p(, 7)) D,) q,@)
="' (x, 2qp_ (D),
qo(2) = p(x, 2), gy =plx+h,2)

with some boundary conditions. If the square of the hor-
izontal wavenumber is present in the boundary condi-
tions as for the liquid half-space or a solid layer on the
ocean surface, then it must be replaced with p,. These
boundary problems can be solved on digital computers
by using various discrete techniques. The finite elements
technique in the form of integral equalities [12] seems
to combine the simplicity of implementation and a high
enough order of approximation of the original differen-
tial problem due to the special form

A_lf\
B-wR'=~i L.

Here, M and I are the band matrices easily constructed
fror the coefficients of the original differential problem.

Based on the above algorithms, we have developed
a package of Fortran-coded routines to calculate long-
range underwater sound propagation in the range-depth
dependent enviropments. The performance of this pack-
age on the IBM PC may be characterized as follows.
On a computer with a speed-of 3.425 x 10° DWHET
{double precision Whetstone test from MsFortran pack-
age), the calculation for the 10-km thick of ocean-bot-
tom model at the frequency 25 Hz up to a range of
200 km takes 580 s with sufficient accuracy in the graz-
ing angle interval up to 1+:35°. The calculation results for
layered waveguides are practically identical to the
results obtained by the normal modes technique. The
figure shows the results for two benchmarks from [13]
for a deep and a shallow sea. Comparison of different
calculation techniques and applications of our tech-
nique to the interpretation of experimental data can be
found in [14, 15].

Let us now consider an implementation of the full
iteration process (5) evaluating the wavefields in both
directions. To avoid the calculation of the derivatives of
medinm properties, from the very beginning, we use a .
medium model consisting of short, layered, waveguide
intervals ajoining each other at vertical sections. Using
the lower index [/ to denote the waveguide interval
(x,-1, x;), and denoting

E, = exp (i®S,(x,— x,_)) ),
S;= (R BEN, Z= BR(x)S,
xy=a, x,=b, !

we obtain from the conditions of continuity on the bor-
ders of the intervals (omitting the intermediate calcula-
tions) the operators I, () as two-diagonal matrices, and
[, U as diagonal matrices:
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1 0
-1 (1+2;'2) /2
po! 0 -E, (1+2;'2,) /2
-E,_, (1+2Z;',Z,)/2 0
-E, (+7,'Z,.1) /2
~(1+2,'2) 72 E,
o - 0 —(1+7,'Z)/2 E,
—(1+Z..Z)/2 1 (1D
0 1
(Z'Z,— 1) /2 0 «
\ 0 (Z'Z,~1) /2 AN
(Z44Z,~1)72 0
0 0
0 0
0 —(Z,'Z,-1) /2
U = - ’
-(Z;1,2,-1) /2 0
0 (22— 1) 72

whose elements do not use the derivatives of medizm
properties. The action of Zand Z™! can be fulfilled using
the Padé approximations. The one-way algorithm,
including the transmission operator, takes the form

!
u,, =2(1+%'2,, En,

For small differences between Z; and Z; , ;, in a first
approximation, we obtain from this difference an easy
recurrence equation

u., = (3/2-1/2Z,7,, ) En,.
Let us now construct the algorithm for the calcula-

tion of the one-way approximation sound field in the
ocean, with three-dimensional inhomogeneities slowly

varying along the horizontal coordinates. The system of
acoustic equations for a three-dimensional stationary
liquid has the form ‘

D, 0 0 -iwpl| p f
D, 0 —iop 0 |lv|_|f|
D, -iop 0 O v, 5y
-iop™'C? D, D, D, || % 4
YUp(x= ¥, 0) + V}.(x’ ¥, O) = 09
Yup(x,y, H) + v(x, H) =0,
(-x: ¥, Z) € (—w’ Do) X (-——oo, oo) X (09 H)'
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Eliminating the vertical and shear components of the
acoustical velocities v, and v,, we obtain their operator
form:

D

X

D.v

f

X .

w

0 ioR
B 0

p
v

+

Assuming that the medium properties slowly vary
along the x axis, with the additive factoring technique
we get the one-way equation (neglecting the difference
of the transmission coefficient from unity) '

D,pi -ioS®p, =0,
-1
S = (C?-pD, ((iw)’p) D,
D, ((im)’p) D))"

Using the algorithm (10) to solve this equation yields

E=T[d-2m@)
k

X (C?=pD, ((i®)’p) D, (12)

-1

oD, ((i0)%0) D,~1,) ).

From (12), we see that, to calculate the field of acousti-
cal pressure on each step on the x axis, we need to solve
two-dimensional boundary problems analogous to the
two-dimensional acoustic boundary problems in a
highly absorbing medium because all Im, < 0:

D, .0 —ip p £,
D, —iop 0 V.| =1 £
—iop ' (C7-w) D, D, || ¥ 1%

YoP()’! 0) + v'z(y’ 0) =0, YHP()’, H) + Vz(ys H) =0.

If the properties of the medium vary slowly also
along the y axis, then this equation can be solved by
applying the iteration process in the form (11) describ-
ing the propagation-of waves in both directions.

Thus, the use of the additive factoring technique and
the rational-fractions Padé approximations in the calcu-
latton of the harmonic sound field in two- and three-
dimensional models of the ocean yielded algorithms
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and, partly, programs offering sufficient performance
and accuracy.
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