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The family of algorithms for harmonical and banded sound field calculations
in 2D and 3D ocean models with sound speed and density slowly varying with
horizontal coordinates and arbitrary on depth including nonhomogenuous solid
bottom is proposed, based on the method of additive WKB-like factoring. The
accordance between such a method and the coupled modes two- and one-way
solutions is established in 2D case. Convergence of the appropriate iteration
process is evaluated. The resulting initial pseudodifferential parabolic problems
are numerically solved with any given accuracy by the high order Pade-type
approximation algorithms, featuring several wavelengths step size on horizontal
coordinates. The performance of the computer implementation, adopted to
underwater sound propagation calculations in 2D model is discussed.

PACS numbers: 43.20Bi, 43.20Mv, 43.30Bp

INTRODUCTION

Many problems of underwater sound propagation and marine seismology are of
interest in case not only of layered media but of media with properties varying
in two or three directions. Among mathematical procedures to predict wave
fields in such circumstances the most used are the method of coupled modes
1,2,3 and the parabolic equation technique in its various realizations 4−7.
In this paper we treat the problem of wave field calculations in the scalar

and/or solid three-dimensional acoustic waveguide with properties slowly vary-
ing on horizontal coordinates and arbitrary on depth by the method of additive
factorization. That enables to establish the equivalence of coupled modes two
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and one-way solutions or guided waves equations to the appropriate systems of
abstract parabolic pseudodifferential equations and to get the iteration process
to evaluate the transmitted and backscattered waves.
The algorithms of two- and one-way field computations based on high-order

Pade approximations are proposed featuring the low computation cost at any
given accuracy.
In Sec.I we introduce the operator form of Green’s function of point harmonic

source in layered waveguide, then we apply the method of additive factorization
to the harmonic field calculation in three-dimensional waveguide with transla-
tional or rotational symmetry and formulate the Pade approximations based
numerical algorithms for two- and one-way solutions.
In Sec.II we describe the similar technique to calculate fields with arbitrary

time dependence.
In Sec.III the fully three-dimensional problem is treated in one-way on x and

two-way on y manner.
In Sec.IV the two- and three-dimensional problems involving solid bottom

are considered.

1 BASIS INVARIANT FORM OF GUIDED

WAVES EQUATIONS ANDADDITIVE FAC-

TORIZATION

Next exposition uses Riesz’s definition 8 of function f of linear operator T
(I - identity operator):

f(T) = (2πi)

∫
Γ

f(λ)(T− λI)−1dλ (1)

where the integration path Γ encircles the spectrum of operator T in complex
plane λ leaving him left.
Considering now the well known integral form of point harmonic source

acoustical pressure field p(x, y, z) in layered medium 9 one can see that it exactly
conforms with

p(x, y, z) = iπH
(1)
0 (
√
T(x2 + y2))δ(z − zs), (2)

where T is the transversal differential operator

Tq(z) = ρDzρ
−1Dzq(z) + ω2C−2q(z) (3)

with definition domain consisting of functions q(z) smooth enough and satisfying
the appropriate boundary conditions, for example

q(0) = 0, max
z>0
q(z)q∗(z) < const (4)
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Eq. (2) establishes the analogy between the two-dimensional Helmholtz equa-
tion

D2xp+D
2
yp+K

2p = δ(x, y) (5)

with solution H
(1)
0 (
√
K2(x2 + y2)) and its three-dimensional case

D2xp+D
2
yp+Tp = δ(x, y, z). (6)

giving us a motivation for further investigation.
It is convenient to describe the wave propagation in heterogeneous media

by the system of differential equations with coefficients depending only on the
material properties - not on their derivatives - the system of linearized hydrody-
namics equations. For the acoustical wave propagation in a three-dimensional
liquid waveguide translationally invariable on y cartesian coordinate without
currents it takes the form: Dx 0 −iωρ

Dz −iωρ 0
−iωρ−1C−2 Dz Dx

 p
vz
vx

 =
 fxfz
V


Y0p(x, 0) + vz(x, 0) = 0, YHp(x,H) + vz(x,H) = 0

(x, z) ∈ (−∞,∞)× (0, H), (7)

p being acoustical pressure, vx, vz-acoustical velocity cartesian components,
fx, fz - cartesian components of external forces density, V -external volume ve-
locity density, ρ-medium density, C-medium sound speed, all of them being
functions of cartesian horizontal coordinate x or range and vertical coordinate
z or depth. Dx and Dz are partial derivatives on x and z, ω - cyclic frequency,
i2 = −1, Y0 and YH - acoustical admittances at upper and lower boundaries
of waveguide, H - the maximum depth of the waveguide, taken into account.
First two equations of (7) are the Newton equations, the third is the continuity
equation. Deleting from (7) the vertical component of the acoustical velocity
vz , we obtain the operator form of (7):(

Dxp
Dxv

)
=

(
0 iωR
iωB 0

)(
p
v

)
+

(
fx
W

)
p(x) = p(x, z),vx(x) = vx(x, z),

Rv = ρ(x, z)vx(x, z),

Bp(x) = (ρ−1(x, z)C−2(x, z)−Dz((iω)2ρ(x, z))−1Dz)p(x, z),
fz(x) = fz(x, z), W(x) = V (x, z)−Dz(iωρ(x, z))−1fz(x, z)

Y0p(x, 0) + (iωρ(x, 0))
−1Dzp(x, 0) = 0,

YHp(x,H) + (iωρ(x,H))
−1Dzp(x,H) = 0 (8)
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Operator equations (8) are basis invariant form of guided waves equations 1,2:
assuming for the sake of simplicity R = I and taking into account that the
operator B in the local normal modes φl(x, z) basis has the diagonal form

B(x) = Φ̂(x)C−2(x)Φ̂−1(x), Φ̂(x) = rowl{~φl(x)},C(x) = diagl{Cl} (9)

Cl being the phase velocity of l-th local normal mode, we obtain for the local
normal modes amplitudes a(x) = Φ̂−1(x)p(x), b(x) = Φ̂−1(x)v(x) the equa-
tions:

Dxal(x)− iωbl(x) = −
∑
k

γlk(x)ak(x),,

Dxbl(x)− iωC−2l (x)al(x) = −
∑
k

γlk(x)bl(x), (10)

where γlk = {Φ̂−1(x)(DxΦ̂(x))}lk are the local normal modes coupling coeffi-
cients.
We shall now reformulate eqs. (8) in the manner of Wentzel - Kramer - Bril-

louin method. Let us assume, that outside of interval x ∈ (a, b) our waveguide
is layered and all sources are situated inside this interval. Introducing the new
local amplitudes of waves of two opposite directions:(

p
v

)
=

(
Y−1(x) Y−1(x)
Z(x) −Z(x)

)(
u+

u−

)

S(x) =
(√
R(x)B(x)

√
R(x)

)1/2
Y(x) =

√
S(x)
(√
R(x)

)−1
, Z(x) =

(√
R(x)

)−1√
S(x) (11)

and taking into account that outside of the interval (a, b) only outgoing waves
must exist, we obtain by this process of additive factorization10 the following
system of equations: (

P U
L Q

)(
u+

u−

)
=

(
F+

F−

)
P = Dx − iωS(x) + 1/2

(
Z−1(x)(DxZ(x))−Y−1(x)(DxY(x))

)
, u+(a) = 0

Q = Dx + iωS(x) + 1/2
(
Z−1(x)(DxZ(x))−Y−1(x)(DxY(x))

)
, u−(b) = 0

L = U = −1/2 (Z−1(x)(DxZ(x)) +Y−1(x)(DxY(x)))(
F+

F−

)
= 1/2

(
Y Z−1

Y −Z−1
)(

fx
W

)
(12)
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wich can be solved by the Gauss-Zeidel iterations:

u+k = P
−1(−Uu−k−1 + F+), u−k = Q−1(−Lu+k + F−) (13)

converging, if
∣∣P−1UQ−1L∣∣ < 1 for some norm |∗|. If ρ and β are slowly varying

with x, then U and L are small and for well defined Cauchy’s operators P and
Q the convergence of (13) is very probable. From eq.(13) we can see that the
operators L and U describe the backscattering, P and Q - propagation (with
terms ±iωS) and transmission through the inhomogeneities. Assuming now zero
field as zero order approximation we obtain for the first order approximation of
one-way positive direction wave u+1 :

Pu+1 = F
+ (14)

yielding in the local normal modes basis the one-way guided waves equations 2:

Dxcl − iωC−1l cl = −
∑
k

γlk(Cl + Ck)(2ClCk)
−1 + {Φ̂−1F+}l (15)

Supposing the coupling coefficients γlk to be fast diminishing with |l − k| and
therefore letting

(Cl + Ck)/(2ClCk)
−1 ≈ 1 (16)

neglecting so the difference of transmission from identity, we can obtain then in
operator form the abstract parabolic equation

Dxu
+
1 − iωS(x)u+1 = F+ (17)

giving rise to the family of known PEs, according to the technique employed to
approximate S and to solve the resulting approximated equation.
The aim of additive factorization (11,12) is to block-diagonalize the matrix

of eq.(8) in layered case. If B is selfadjoint then this factorization conserves the
energy flow form 11:

p∗v = (Y−1(u+ + u−) )∗ (Z(u+ − u−) ) = (u+)∗u+ − (u−)∗u− (18)

and has a small enough nondiagonal L and U, resulting in small backscattering
and near to identity transmission. Moreover, this factorization provides the
exact reciprocity of right and left going waves of first order - solutions of

Pu+1 = F
+ (19)

and
Qu−1 = F

−, (20)

The fundamental discussion of this question and Riccati’s equation based for-
mulation of (11,12) can be found in 11−14. For underwater sound pressure
calculations the factorization(

p
v

)
=

(
I I
Z(x) −Z(x)

)(
u+

u−

)
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S(x) = (R(x) B(x) )1/2

Z(x) = R−1(x)S(x) = B(x)S−1(x) (21)

appears to be of some interest due to the simplicity of equality

p = u+ + u− (22)

The equations, corresponding to (12) are now(
P U
L Q

)(
u+

u−

)
=

(
F+

F−

)
P = Dx − iωS(x) + 1/2Z−1(x)(DxZ(x)), u+(a) = 0
Q = Dx + iωS(x) + 1/2Z

−1(x)(DxZ(x)), u−(b) = 0

L = U = −1/2Z−1(x)(DxZ(x)) (23)(
F+

F−

)
= 1/2

(
I Z−1

I −Z−1
)(

fx
W

)
and lead under the same assumptions to the eq. (17).
To solve (17) on the x grid with step h it is convenient to use the algorithm

u+(x+ h) = exp(iωhS(x))u+(x) (24)

of exponential fitting type 4,15,16. To approximate the propagation factor oper-
ator

E = exp(iωhS(x)) (25)

with any given accuracy we use the rational approximation: if

f(λ) ≈ Fn(λ)/Gm(λ) (26)

(Fn, Gm-polynomials of degrees n,m) in the vicinity of the operator’s S spec-
trum then (1) gives

f(S) ≈ Fn(S)(Gm(S))−1 (27)

We construct the appropriate approximation to exp(ih
√
λ) with the known Pade

approximations 17:

exp(λ) = (Mn(λ
2) + λNn(λ

2) ) (Mn(λ
2)− λNn(λ2) )−1 + En(λ),

√
λ = Fm(λ)(Gm(λ))

−1 +Hm(λ) (28)

Mn, Nn, Fm, Gm being polynomials with real coefficients, computed by recur-
rence, Em, Hn- approximation errors known to fade with increasing m and n
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in the complex plane without the negative half of real axes. Combining this
approximations we get

exp(ih
√
λ) =

Gm(λ)Mn(−h2λ) + ihFm(λ)Nn(−h2λ)
Gm(λ)Mn(−h2λ)− ihFm(λ)Nn(−h2λ) =

=

k=n+m∏
k=1

(λ − µ∗k(h) ) (λ − µk(h) )
−1

(29)

µk being the roots of denominator in the above fraction, µ
∗
k - their complex

conjugated. We have computed µk for some m,n,h. All of them are situated in
the IV quadrant of complex plane far enough from the spectrum of S, lying in
the I and II quadrants, the fact leading to stability of action by E. The error
of (29) is decreasing with n,m increasing, in the whole complex plane without
the negative half of real axes,but practically important is to approximate the
region of spectrum, corresponding to propagating local normal modes, lying in
the vicinity of (1,0) in the upper halfplane. For example, m = 4, n = 4, h = 4π
give for local normal modes with Brillouin angles up to 600 the phase error less
than 5 ∗ 10−6rad enabling underwater sound propagation calculations to the
range of 9000kM with frequencies up to 100Hz with absolute phase error less
then π/2.
The computer implementation of the above technique needs a discretiza-

tion of vertical coordinate z and an appropriate discrete approximation of S.
This can be done by finite-differences techniques, Galerkin’s method, Marchuk’s
equalities method and etc10. The common feature of such techniques is that the
operator B can be approximated by the product B̂−1Â of band matrices B̂ and
Â, while R is approximated by the diagonal matrix R̂, giving for E with S from
eq. (21):

Ê ≈
∏
k

( R̂B̂−1Â −µ∗k ) ( R̂B̂−1Â −µk )−1 =

=
∏
k

( Î− 2Im(µk)(Â − µkB̂R̂
−1)−1B̂R̂−1 ) (30)

- an easy to implement algorithm, including multiplication by band matrices
and solving systems of equations with such matrices. Taking now into account,
that the rational approximation to E is fully determined by the set of µk, we
can include into our consideration also the case of admittances Y0, YH depend-
ing on local normal mode phase velocity, and henceforth, on spectral parameter
µk, as for underlying semispace with known properties. This assumption leads
to the dependence of Â and B̂ on µk due to their dependence from boundary
conditions in B while the above form of rational approximation to E remains un-
changed.This feature is unique to the propagation factor algorithm (29,30).The
another advantage of (29,30) is the aggregate approximation of eq. (17) and his
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solution resulting in lower calculations cost comparably to other known tech-
niques.
The three-dimensional cylindrically-symmetric problem with the source lo-

cated on the symmetry axis Dr 0 −iωρ
Dz −iωρ 0

−iωρ−1C−2 Dz r−1Drr

 p
vz
vr

 =
 0
fz2r

−1δ(r)
V 2r−1δ(r)


Y0p(r, 0) + vz(r, 0) = 0, YHp(r,H) + vz(r,H) = 0,

(r, z) ∈ (0,∞)× (0, H), (31)

may be treated in the same way: substituting r = exp(x),
w = exp(x)vr and deleting vz , we get for r > 0(

Dxp
Dxw

)
=

(
0 iωR

iω exp(2x)B 0

)(
p
w

)
(32)

and the one-way equation after returning to r variable

Drp
+
1 − iωS(r)p+1 + r−1/2 = 0 (33)

or

p+1 = r
−1/2q

Drq
+ − iωS(r)q+ = 0 (34)

Assuming the waveguide to be layered in such vicinity of the source, that
the simplest asymptotic expansion (2/iπωsr)1/2 exp(iωsr) of Hankel function

H
(1)
0 (ωsr) holds on its outer border and taking into account,that this expansion
satisfies (33), we can get the initial condition for q as 18:

q(0) = (ωS/2πi)−1/2W (z) (35)

We have developed the package of FORTRAN-coded routines to calculate the
long-range underwater sound propagation in range-depth dependent environ-
ment accordingly (30,34,35). The performance of this package may be approxi-
mately evaluated as 50 floating points operations per one wavelength on x per
one node in grid on z having the typical value of one fourth of the wavelength
by sufficient accuracy for Brillouin angles up to 350. In layered waveguides the-
computations results are practically identical to normal modes derived results,
some verification in range-dependent environment may be found in 19.
The recent discussion 6,7 showed the usefulness of two-way algorithm im-

plementing and including the transmission operators in one-way solution. The
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convenient algorithmic implementation of two-way problem can be got through
the observation that we may from beginning use the medium model consisting
of short layered waveguides intervals to get the additive factorization of eq. (8)
or (31). Introducing the grid on xa = x0, . . . xl, . . . , xL = b and denoting

El = exp(iωSl(xl − xl−1)), Sl =
√
R(x)B(x), Zl = R

−1(xl)Sl (36)

we get, omitting the intermediate calculations, the operators P,Q as two-
diagonal matrices, L,U as diagonal matrices:

P =



I 0

−I 1+Z−10 Z1
2

0 −E1 1+Z−11 Z2
2· · ·

−EL−1 1+Z−1
L−1ZL
2 0

−EL 1+Z−1
L
ZL+1
2



Q =


− 1+Z−11 Z02 E1

0 − 1+Z−12 Z12 E2
·

− 1+Z
−1
L+1
ZL

2 I
0 I



L =



Z−11 Z0−1
2 0

0
Z−12 Z1−1

2·
Z−1
L+1
ZL−1
2 0
0 0



U =


0 0

0 −Z−10 Z1−12 ·
−Z

−1
L−1ZL−1
2 0

0 −Z
−1
L
ZL+1−1
2


(37)

enabling the straightforward implementation of Gauss-Zeidel iterations without
computation of DxZ. The action by Z and Z

−1 can be fulfilled using Pade
approximations. The one-way algorithm, including the transmission operator
would take the form

ul+1 = 2(1 + Z
−1
l Zl+1)

−1Elul (38)

9



yielding by additional approximation Dz ≈ 0 in Zland Zl+1 the energy-conserving
or impedance-matched PE of6.
Consider now the sound field in a layered waveguide in presence of horizontal

current with current speed (U, 0, 0). The system of linearized hydrodinamics
equations is now Dx −ρU ′ ρ(−iω + UDx)

Dz ρ(−iω + UDx) 0
ρ−1C−2(−iω + UDx) Dz Dx

 p
vz
vx

 = 0
p(x, 0) = 0, p(x,H) = 0,

where U ′ = ∂U/∂z and we neglected the term ∂P/∂z. Solving this system for
Dx derivatives, one gets

Dx

 p
vz
vx

 =
 −iωC−1MQ ρQ(−U ′ + UDz) iωρQ
−ρ−1U−1Dz iωU−1 0
iωρ−1C−2Q Q(−C−2UU ′ +Dz) iωC−1MQ

 p
vz
vx


where M = U/C is the Mach number and we denoted Q = (1 −M2)−1. To
insulate the unacoustical mode of motion with p = 0 we introduce in place of
vx the new variable w = (−iω)−1 ( (−U ′ + UDz)vz + vx ) to get

Dx

 p
vz
w

 =
 −iωC−1MQ 0 iωρQ

−ρ−1Dz iω 0
iωρ−1C−2Q− (−2U ′/U +Dz)(iωρ)−1Dz −2U ′/U iωC−1MQ

 p
vz
w


seeking the solution of this sytem of linear differential equations as

(p, vz , w)
t = exp(Λx)(p, vz, w)

t

we get for Λ matrix the equation

det

 iωU− Λ 0 iωR
−ρ−1Dz iω − UΛ 0

iωρ−1C−2Q− (−2U ′/U +Dz)(iωρ)−1Dz −2U ′/U iωU− Λ

 = 0
or, subtracting the second row multiplied by −2U ′/U from the third

iωU+ Λ = −ω2R (B− 2U ′/U ( (iω − UΛ)−1 − (iω)−1 ) (iωρ)−1Dz )
where we denoted

U = C−1M(1−M2)−1
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R = ρ(1−M2)−1

B = ρ−1C−2(1−M2)−1 −Dz(iωρ)−1Dz
Supposing now U to be small and neglecting the commutators we get as the
first order approximation for acoustical waves, propagating in both directions

Λ = −iωU+QU ′(iω)−1Dz ± iω
√
RB

The third value of Λ is singular (∼ U−1) and describes nonacoustical mode of
medium motion. From this we get the equations of waves propagating from left
to right (+) and from right to left (-)

Dxu+ = iωU+QU
′(iω)−1Dz + iω

√
RB)u+

Dxu− = iωU+QU ′(iω)−1Dz − iω
√
RB)u+

with the sound pressure
p = u+ + u−

In a uniform unbounded medium from above equations follows the well known
dispersion equation

ω = Ck + Uk

(k - wave number). Numerical solving of above equations may be fullfilled with
the split-step algorithm analogous to the well known Hardin-Tappert technique:

u+(x+ h) = exp(h(V + iω
√
RB))u+(x) =

= exp(hV/2) exp(ihω
√
RB) exp(hV/2)u+(x) +O(h

3)

with V= iωU+QU ′(iω)−1Dz and h being the step on the horizontal coordinate.
In slowly range depending environment these equations are valid under the same
presumptions as above.

2 ARBITRARY TIME DEPENDENCE

We shall start this section with the remark, that the Cauchy’s operator spectrum
cannot be situated in any final part of the complex plane 20, the fact establishing
relationship between definition (1) and the well known definition of function of
time derivative operator Dt, based on the Laplace transform L

21 :

f(Dt)φ(t) = (2πi)

∫
Γ

f(λ)(Dt − λ)−1φ(t)dλ =

=

∫
Γ

dλf (λ)

∫ ∞
0

dτφ(τ) exp(λ(t− τ)) =

11



=

∫
Γ

dλf (λ) exp(λt)

∫ ∞
0

dτφ(τ) exp(−λτ ) =

= L−1 [ f(p) L[φ] (p) ] (t) (39)

where Γ must be any path encircling the infinity point of complex plane, for
example, the Mellin’s path (c−i∞, c+i∞),if f(p)L[φ](p) does not have irregular
points on the right of this path.
Now we shall formulate the fundamental solutions of one and two-dimensional

wave equation initial problems as outgoing on the space coordinate waves. For
the problem on the real axes with zero initial conditions

D2xu(x, t)− C−2D2t u(x, t) = −δ(x)δ(t) (40)

the well known 22 fundamental solution

u(x, t) = C/2θ(t− C−1 |x|) (41)

can be written as if (40) would be a Helmholtz equation with wave number
iC−1Dt:

u(x, t) = − ( 2i(iC−1Dt) )−1 exp ( i |x| (iC−1Dt) ) δ(t) (42)

Really, due to the property of Laplace transform

exp(−τDt)φ(t) = φ(t− τ ) (43)

we get

− exp ( i |x| (iC−1Dt) ) ( (2i(iC−1Dt)−1 ) δ(t) =
exp ( i |x| (iC−1Dt) )C/2θ(t) = C/2θ(t− C−1 |x|) (44)

The two-dimensional problem on the plane with zero initial conditions

D2xu(x, y, t) +D
2
yu(x, y, t)− C−2D2t u(x, y, t) = −δ(x)δ(y)δ(t) (45)

may be solved the same way:

u(x, y, t) = (2π)−1K0(C−1
√
x2 + y2Dt)δ(t) (46)

because of

u(x, y, t) = (2π)−1θ(t− C−1
√
x2 + y2)/

√
t2 − C−2(x2 + y2) =

= L−1
[
K0(C

−1√x2 + y2p)] (t) (47)

(see 23).
Now, as in Sec.I, we apply the method of additive factorization on x co-

ordinate to the the system of differential equations, governing acoustical wave
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propagation in a three-dimensional liquid waveguide translationally invariable
on y cartesian coordinate: Dx 0 ρDt

Dz ρDt 0
ρ−1C−2Dt Dz Dx

 p
vz
vx

 =
 fxfz
V


Y0p(x, 0, t) + vz(x, 0, t) = 0, YHp(x,H, t) + vz(x,H, t) = 0,

p(x, z, 0) = 0, vz(x, z, 0) = 0, vx(x, z, 0) = 0

(x, z) ∈ (−∞,∞)× (0, H), (48)

and get under the same assumptions the pseudodifferential equation, governing
the one-way propagation

Dxp
+ +Dt

√
C−2 + ρDzρ−1D−2t Dzp

+ = F+ (49)

We can solve it the same way as one-way eq. (17)for harmonic field:

p+(x+ h, t) = Ep+(x, t) (50)

with the propagation factor operator E being now

E = exp(−hDt
√
C−2 + ρD[z]ρ−1D−2t Dz) =

=

∫ i∞
−i∞
dp

∫
Γ

exp(−hp
√
λ)(C−2 + ρDzρ−1p−2Dz − λ)−1dλ (51)

the path Γ now encircling all spectra σ(p) of transversal differential operator in
the last integral. To apply the Pade approximations technique consider now the
banded sources of type

V = Re(W (t) exp(−iω0t)) (52)

where the source envelope W (t) varies slowly with respect to cos(ω0t) so having
the finite bandwidth h∆ω < ω0 . Assuming the solution to have the same type
Re(p(t) exp(−iω0t)), we get for E with (48,51)
E = exp(−h(Dt − iω0)

√
C−2 + ρDzρ−1(Dt − iω0)−2Dz)=

=

∫ i∆ω
0

dp

∫
Γ

exp(−h(p−iω0)
√
λ)(C−2+ρDzρ−1(p−iω0)−2Dz−λ)−1dλ (53)

Suppose now, that we have computed a set of µk(h, ω0, p) from (29) for p ∈
(0, i∆ω) and have approximated µk and Im(µk) by some rational fractions on
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p Mk(h, ω0, p) and Ik(h, ω0, p). The discrete approximation to the transversal
differential operator takes now the form

C−2 + ρDzρ−1(Dt − iω0)−2Dz = Ĉ−1(Â+ B̂(Dt − iω0)−2) (54)

Taking into account the approximations (30), wich have now to be exact enough
in the interval (ω0, ω0 +∆ω), we get the rational approximation to E as

Ê ≈
∏
k

(
Î − 2Ik(h,ω0,Dt)

(Â+B̂(Dt−iω0)−2−M∗
k
(h,ω0,Dt)ĈR̂−1

ĈR−1
)

(55)

- the production of infinite impulse response time-domain filters with matrix
coefficients. This algorithm allows calculations marching not only the time, but
also the spatial horizontal coordinate and therefore is much easier to computer
implementing, than traditional time-marching algorithms. The discrete approx-
imation of time derivative operator D can be got in various ways, among those
we prefer the discretizations based on the Pade approximations of relationship

τDt = ln∆ (56)

easily derived from (43), τ being the time step, ∆ - the time τ shift operator:
∆φ(t) = φ(t+τ). For example, using the (0,1) Pade approximation of λ−1 ln(1+
λ), we get the widely used in filters design 24 approximation

Dt = 2τ
−1(∆− 1)(∆ + 1)−1 (57)

The higher degrees of Pade approximation give us the more exact discretizations.
The system of equations (48) is valid for the fluids without viscosity or other

dissipation processes. For example, if only the one relaxation process exists in
the medium, the eqs. (48) take form 25 Dx 0 ρDt

Dz ρDt 0
ρ−1(1 + τrDt)(C21 + C22τrDt)−1Dt Dz Dx

 p
vz
vx

 =
 fxfz
V


(58)

τr being the relaxation characteristic time, C1- the sound velocity for small
frequencies, C2- for high frequencies, but if the signal is banded, the complex
values of C in (48) may supply a good approximation.
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3 THE THREE-DIMENSIONAL HETEROGE-

NEOUS LIQUID WAVEGUIDE

Consider now the system of differential equations, governing harmonic acoustical
wave propagation in a three-dimensional liquid waveguide

Dx 0 0 −iωρ
Dy 0 −iωρ 0
Dz −iωρ 0 0

−iωρ−1C−2 Dz Dy Dx



p
vz
vy
vx

 =

fx
fz
fy
V


Y0p(x, y, 0) + vz(x, y, 0) = 0, YHp(x, y,H) + vz(x, y,H) = 0

(x, y, z) ∈ (−∞,∞)× (−∞,∞)× (0,H), (59)

Deleting, as in Sec.I from (59) the vertical and shear components of the acous-
tical velocity vz and vy , we obtain the operator form of (59):(

Dxp
Dxv

)
=

(
0 iωR
iωB 0

)(
p
v

)
+

(
fx
W

)
Bp(x) = (ρ−1C−2 −Dy((iω)2ρ)−1Dy −Dz((iω)2ρ)−1Dz)p(x, y, z) (60)

Assuming the slowness of medium properties dependence on x, we get with the
factorization (21,23) the one-way equation

Dxp
+
1 − iωS(x)p+1 = 0

S = (C−2 − ρDy((iω)
2ρ)−1Dy − ρDz((iω)

2ρ)−1Dz )
1/2 (61)

and approximate the propagation factor as

Ê ≈
∏
k

(
Î− 2Im(µk)

(
C−2 − ρDy((iω)2ρ)−1Dy − ρDz((iω)2ρ)−1Dz − µk

)−1 )
(62)

From this we see, that for each step on x we need to solve some two-dimensional
Helmholtz-type boundary problems in highly absorbing medium (all Imµk < 0,
see Sec.I) of type Dy 0 −iωρ

Dz −iωρ 0
−iωρ−1(C−2 − µk) Dz Dy

 p
vz
vy

 =
 fxfz
V


Y0p(y, 0) + vz(y, 0) = 0, YHp(y,H) + vz(y,H) = 0 (63)

This can be done by applying the full Gauss-Zeidel iterative process (13) if the
medium properties dependence on y is also slow.
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4 THE SOLID BOTTOMCONSIDERATIONS

The harmonical acoustical wave propagation in an isotropic elastic medium is
governed by the Newton’s and Gook’s lows

iωρvα + ∂σαβ/∂xβ = 0, iωσαβ + λδαβ∂vγ/∂xγ + µ(∂vα/∂xβ + ∂vβ/∂xα) = 0
(64)

Here σ are stresses, v - velocities, λ and µ - Lame coefficients,
all of them depending on all cartesian coordinates x, y and z,
α, β, γ denote x or y or z. Arranging the unknown quantities in the order of
(σxx, vz , σxz , vx, σxy, vy, σyy , σyz , σzz)

t and the equations in the order of New-
ton’s low for vx(N : vx), Gook’s low for σxz(G : σxz), N : vz , G : σxx, N :
vy, G : σxy, G : σyy , G : σyz , G : σzz we wright them in the form

Dx 0 Dz iωρ Dy 0 0 0 0
0 µDx iω µDz 0 0 0 0 0
0 iωρ Dx 0 0 0 0 Dy Dz
iω λDz 0 (λ+ 2µ)Dx 0 λDy 0 0 0
0 0 0 0 Dx iωρ Dy Dz 0
0 0 0 µDy iω µDx 0 0 0
0 λDz 0 λDx 0 (λ+ 2µ)Dy iω 0 0
0 µDy 0 0 0 µDz 0 iω 0
0 (λ+ 2µ)Dz 0 λDx 0 λDy 0 0 iω


×

× (σxx, vz, σxz , vx, σxy , vy, σyy, σyz , σzz)t = 0 (65)

Supposing now the medium to be a waveguide (x, z) ∈ (−∞,∞) × (0,H) with
translational symmetry on y cartesian axis and deleting last three stresses by
combining 3,4 and 9, 5 and 8 equations, we get

Dx 0 Dz iωρ 0 0
0 Dx iω/µ Dz 0 0

Dz
λ

λ+2µ
iωρ+Dz

4µ(λ+µ)
iω(λ+2µ)

Dz Dx 0 0
iω
λ+2µ

λ
λ+2µDz 0 Dx 0 0

0 0 0 0 Dx iωρ−Dz µiωDz
0 0 0 0 −1

µ
Dx




σxx
vz
σxz
vx
σxy
vy

 = 0

(66)

The wave (σxy , vy)
t is seen to propagate independently. Introducing R and B

operators as

R =

(
Dz iωρ
iω
µ

Dz

)
=

(
1 0
0 µ

)−1(
Dz iωρ
iω µDz

)
=M−1R
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B =

(
Dz

λ
λ+2µ iωρ+Dz

4µ(λ+µ)
iω(λ+2µ)Dz

iω
λ+2µ

λ
λ+2µDz

)
(67)

we can write the equations for shear s = (σxz , vx)
t and compression c =

(σxx, vz)
t waves in the form(

Dxc
Dxs

)
=

(
0 −R
−B 0

)(
c
s

)
(68)

All considerations of Sec. I are applicable with minor difference: the spectrum
of S will now occupy the I,II,III quadrants of the complex plane, forcing the cut
of the squareroot in (28) follow the (0,−i∞) ray. The appropriate squareroot’s
Pade approximation can be easily derived:

√
λ = exp(iπ/4)Fn(exp(−iπ/2)λ)/Gn(exp(−iπ/2)λ) (69)

Even if the layers of fluid with µ = 0 are present in the model, the rational
approximation (29,30) of propagation operator holds due to its nonsingular form

Ê ≈
∏
k

(M−1RB− µ∗k ) (M−1RB− µk )−1 =

=
∏
k

( Î− 2Im(µk)(RB− µkM )−1M ) (70)

enabling an uniform implementation of the algorithm.

5 CONCLUSION

We have used operator notation of fluid and solid acoustic’s equations to get the
system of pseudodifferential equations, governing the two- and one-way propaga-
tion of sound in range-depth and 3D dependent environment, outlined its phys-
ical sense and proposed effective numerical algorithms to solve it for two- and
one-way propagating fields, including arbitrary time dependence and banded
signals.
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