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e Rays
e Modes
e Wavenumber integration (FFP)

e Parabolic Equation



Governing equation (the wave equation):




Ray Theory

Seek a solution of the Helmholtz equation in the following form:
pl) =100 A
where, k = w/cy.
e called the Ray Series.

e generally divergent.

e provides an asymptotic approximation



Differentiate the ray series ...
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Substitute back in the Helmholtz equation ...
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Solving the Eikonal Equation (Method of Characteristics)

Define rays as curves perpendicular to the wavefronts of 7(x):

d
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But, phase is still unknown.

Lots of work ...
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Rays are now defined just in terms of ¢(x)!



Ray equations in cylindrical coordinates

dr d€ 1 dc
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[7(s), z(s)] is the trajectory of the ray.

Initial Conditions




Solving the eikonal equation

Eikonal equation:
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(eikonal equation in ray coordinate s). Original nonlinear PDE is now a lin

Solution:
1

ds’ .
c(s") °

7(s) = 7(0) + /OS

Phase of the wave is delayed by its travel time.



NORMAL MODES

Helmholtz equation (2-D):

10 ( 8p) N 0’p  w? d(r)d(z — z)

ror\ or 822+02(z)p:_

Solve by separation of variables. Seek p(r, z) = ®(r)V(z).



Depth-separated equation

U(z) must satisfy:

d*0,,(2) w? 5
dz? 2(z) krm] () =0
W(0) =0
dZ z=D B

This must be solved numerically for k,, and W,,(2) (the eigenvalues and eige
of this Sturm-Liouville problem).

e There are an infinite number of modes!
e Fortunately, we can make do with a finite number

e They can be scaled arbitrarily



Depth-separated equation continued ...

Orthogonality property:

Normalization:



Range-separated equation

®(r) must satisfy:

1.d | dd,(r)
r dr " dr

]+k§<1>n(r)o.

The range functions are easy:

O, (r) = HSV (kor).

We can evaluate the Hankel functions exactly but if we're more than A aw
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A summing up ...

plr.2) = 7 3 V(=) Un(z) HY (hur)

or, using the asymptotic approximation to the Hankel function,
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Transmission Loss

eikmr

V|

TL(r, z) ~ —201og

2T S () U(2)
T m=1



Example: Isovelocity profile (c(z) = 1500 m/s)

e Solve for the modes

U, (2)  [w?
U(0) =0
dZ z2=D B

General solution:

U,,(2) = Asin(k,z) + Bcos(k.z) ,

where the vertical wavenumber k. is:

e Top BC implies B = 0.

e Bottom BC implies
Ak, cos(k,D) =0,



requiring

Thus,

[ b

e Corresponding eigenfunctions are given by

U, (2) = E sin (ko 2)

e Sum up the modes to get the pressure field

p(r,z) = % m%; sin(k,pmzs) sin(k.,2) H(gl)(k:mr)



Numerics

Recall the modal equation:

v+ | plue) = o
2 20 z) = 0,
W(0) = 0,
U(D) =0
Finite-difference approximation (¢; = U(z;)):
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Matrix form

A - KT =0.

This equation has N eigenvalues k™ and corresponding eigenvectors 1™,
Y™ is the vector with components W7, W' .. W%, Thus, ¢§m) ~ U, (2
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where,




Mode Normalization

The integral term can be evaluated by the trapezoidal rule. That is,

/()D\If?n(z)dz:h<%¢0+¢1+¢2+...+¢N_1+%¢N) :

where



Say it all in matrices:

1. Solve the algebraic eigenvalue problem At = A\ (A defined above).
Result: o™ X" m =1,... N.
Note: k,,, < V.

2. Sort k,,, and keep the modes with the largest real part.

3. Normalize the eigenfunctions

4. Assemble the eigenvectors into a matrix

) = [¢(1) W@ M) ]
(tim, 1s the ith element of the mth mode.)



5. Calculate mode excitation coefficients C:

( wisd,l |
C «— w’isd,Q
L wisd,M ]
6. Calculate zz, a mode matrix scaled by the mode excitation:
3 1/Cy
Y= |
1/Cy
7. Calculate the ® is a phase matrix:
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8. Sum up the modes:

NG



Recall,

where,




Adiabatic Modes

As the modes propagate in a range-dependent environment, they continus

shape.

As they change shape, energy is continously re-distributed amongst the lo

However, for sufficiently slowly-varying environments the energy mostly s

same mode.

Then, the acoustic field can easily be computed using the adiabatic mod.
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FAST FIELD PROGRAM

Apply a Fourier-Bessel transform to the Helmholtz equation:

/0 (r, 2)Jo(kr)rdr

2 2
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The pressure field is reconstructed using the inverse transform:

= | g(k, 2)Jo(kr)kdk
which can be efficiently evaluated using an FFT (Marsh, DiNapoli(1967) ):
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Matrix form

where,

A-FKTg=0.
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e This is a linear system of NV equations.
e 0 is a function that is 1 at the source depth and 0 elsewhere.

e For each choice of the horizontal wavenumber k we get a response g(k,



Overview of the numerical procedure

1. Set up the matrix A.

2. Define a sequence of wavenumbers

{kj = kpin + jAk+ia,j =1, NK}
A]{? kmax_kmin
NK —1
a = Ak

3. Solve [A — k;I]g = A for each wavenumber k;.
(Result is a matrix g with g;; ~ g(zi; k;)

4. Multiply by Vk:
1/vki

.. 1/\/]{]\[}(

gl +g

5. Do an FFT: g(r,2) = FFT(g(k, 2))



6. Put in the cylindrical spreading and damping factor.
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PARABOLIC EQUATION MODELING

(following Tappert and Hardin (1973))

Recall, Helmholtz equation:

Pp 10p 0%p
B R 0,
8r2+r87“+822+ P =

Seek,
p(r, 2) = (r, 2) H§" (kor),

where H(gl)(kor) is the Hankel function and satisfies:
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We find,
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PE derivation continued ...

Far-field approximation to Hankel function:

0? 0 0?
8—7?5 + 22/6(]8—2% + 8—;2D + k(Q](RQ — 1)7# = (.

(still elliptic and not marchable)

Small-angle approximation (this is not well-motivated yet):

O . O
w < 22/605.

Gives the standard parabolic equation

Loy 0%
22/605 + 922 + k%(nQ — 1)y =0,



Starting Fields

We can’t start the PE with a delta function because it radiates uniform
and the PE abuses the high-angle paths.

Choices:

e Gaussian starter (just a smoothed delta function)
k2

$(0,2) = VEge 267

e Modal starter

e (Greene’s source

k2(z—25)2

(0, 2) = Vo [1.4467 — 0.4201K3(z — 2,)% e~ 30572,



Numerics

Let zbj- = 1(ry, zj), i.e. 1" is a vector that approximates the field at range
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Numerics (continued)

Recall,
o PP 5
2tkg— + —= + k — 1)y =0
? 087“ -+ 82 + O(n )w )
Thus, , .
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