Ocean Acoustic Modeling in MATLAB

Michael B. Porter Science Applications International Corp. 1299 Prospect St., Suite 305 La Jolla, CA 92037

- Rays
- Modes
- Wavenumber integration (FFP)
- Parabolic Equation

Governing equation (the wave equation):

$$\nabla^2 p + \frac{1}{c^2(r,z)} p_{tt} = \frac{-\delta(r-r_s)\delta(z-z_s)}{r}$$

Helmholtz Equation:

$$\nabla^2 p + \frac{\omega^2}{c^2(\mathbf{x})} p = -\delta(\mathbf{x} - \mathbf{x}_s) ,$$

Ray Theory

Seek a solution of the Helmholtz equation in the following form:

$$p(\mathbf{x}) = e^{i\omega \tau(\mathbf{x})} \sum_{j=0}^{\infty} \frac{A_j(\mathbf{x})}{(i\omega)^j}$$

where, $k = \omega/c_0$.

- called the Ray Series.
- generally divergent.
- ullet provides an asymptotic approximation

Differentiate the ray series ...

$$p_x = e^{i\omega\tau} \left[i\omega\tau_x \sum_{j=0}^{\infty} \frac{A_j}{(i\omega)^j} + \sum_{j=0}^{\infty} \frac{A_{j,x}}{(i\omega)^j} \right],$$

and

$$p_{xx} = e^{i\omega\tau} \left\{ \left[-\omega^2(\tau_x)^2 + i\omega\tau_{xx} \right] \sum_{j=0}^{\infty} \frac{A_j}{(i\omega)^j} + 2i\omega\tau_x \sum_{j=0}^{\infty} \frac{A_{j,x}}{(i\omega)^j} + \sum_{j=0}^{\infty} \frac{A_{j,x}}{(i\omega)^j} \right\}$$

Substitute back in the Helmholtz equation ...

$$\nabla^2 p = e^{i\omega\tau} \left\{ \left[-\omega^2 |\nabla\tau|^2 + i\omega\nabla^2\tau \right] \sum_{j=0}^{\infty} \frac{A_j}{(i\omega)^j} + 2i\omega\nabla\tau \cdot \sum_{j=0}^{\infty} \frac{\nabla A_j}{(i\omega)^j} + \sum_{j=0}^{\infty} \frac{\nabla A_j}{(i\omega)^j} \right\} = e^{i\omega\tau} \left\{ \left[-\omega^2 |\nabla\tau|^2 + i\omega\nabla^2\tau \right] \sum_{j=0}^{\infty} \frac{A_j}{(i\omega)^j} + 2i\omega\nabla\tau \cdot \sum_{j=0}^{\infty} \frac{\nabla A_j}{(i\omega)^j} + \sum_{j=0}^{\infty} \frac{\nabla A_j}{(i\omega)^j} \right\} \right\}$$

Equate terms of like order in ω

$$O(\omega^2)$$
: $|\nabla \tau|^2 = c^{-2}(\mathbf{x})$ Eikonal $O(\omega)$: $2\nabla \tau \cdot \nabla A_0 + (\nabla^2 \tau) A_0 = 0$ Transport $O(\omega^{1-j})$: $2\nabla \tau \cdot \nabla A_j + (\nabla^2 \tau) A_j = -\nabla^2 A_{j-1}$, $j = 1, 2, ...$

Solving the Eikonal Equation (Method of Characteristics)

Define rays as curves perpendicular to the wavefronts of $\tau(\mathbf{x})$:

$$\frac{d\mathbf{x}}{ds} = c \, \nabla \tau$$

But, phase is still unknown.

Lots of work ...

$$\frac{d}{ds} \left(\frac{1}{c} \frac{d\mathbf{x}}{ds} \right) = -\frac{1}{c^2} \nabla c$$

Rays are now defined just in terms of $c(\mathbf{x})$!

Ray equations in cylindrical coordinates

[r(s), z(s)] is the trajectory of the ray.

Initial Conditions

$$r = r_s, \qquad \xi = rac{\cos heta}{c(0)},$$
 $z = z_s, \qquad \zeta = rac{\sin heta}{c(0)}$

Solving the eikonal equation

Eikonal equation:

$$\nabla \tau \cdot \nabla \tau = \frac{1}{c^2} \,.$$

Therefore

$$\nabla \tau \cdot \frac{1}{c} \frac{d\mathbf{x}}{ds} = \frac{1}{c^2} \,,$$

or

$$\frac{d\tau}{ds} = \frac{1}{c} \ .$$

(eikonal equation in ray coordinate s). Original nonlinear PDE is now a line

Solution:

$$\tau(s) = \tau(0) + \int_0^s \frac{1}{c(s')} \, ds' \, .$$

Phase of the wave is delayed by its travel time.

NORMAL MODES

Helmholtz equation (2-D):

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial p}{\partial r}\right) + \frac{\partial^2 p}{\partial z^2} + \frac{\omega^2}{c^2(z)}p = -\frac{\delta(r)\delta(z-z_s)}{2\pi r}$$

Solve by separation of variables. Seek $p(r, z) = \Phi(r)\Psi(z)$.

Depth-separated equation

 $\Psi(z)$ must satisfy:

$$\frac{d^2\Psi_m(z)}{dz^2} + \left[\frac{\omega^2}{c^2(z)} - k_{rm}^2\right]\Psi_m(z) = 0$$

$$\Psi(0) = 0$$

$$\frac{d\Psi}{dz}\Big|_{z=D} = 0$$

This must be solved numerically for k_m and $\Psi_m(z)$ (the eigenvalues and eigenst of this Sturm-Liouville problem).

- There are an infinite number of modes!
- Fortunately, we can make do with a finite number
- They can be scaled arbitrarily

Depth-separated equation continued ...

Orthogonality property:

$$\int_0^D \Psi_m(z) \, \Psi_n(z) \, dz = 0 \,, \qquad \text{for} \qquad m \neq n$$

Normalization:

$$\int_0^D \Psi_m^2(z) \, dz = 1$$

Range-separated equation

 $\Phi(r)$ must satisfy:

$$\frac{1}{r}\frac{d}{dr}\left[r\frac{d\Phi_n(r)}{dr}\right] + k_n^2\Phi_n(r) = 0.$$

The range functions are easy:

$$\Phi_n(r) = H_0^{(1)}(k_n r).$$

We can evaluate the Hankel functions exactly but if we're more than λ aw

$$H_0^{(1)}(kr) \to \left(\frac{2}{\pi kr}\right)^{1/2} e^{i(kr - \frac{\pi}{4})}$$

A summing up ...

$$p(r,z) = \frac{i}{4} \sum_{m=1}^{\infty} \Psi_m(z_s) \Psi_m(z) H_0^{(1)}(k_m r)$$

or, using the asymptotic approximation to the Hankel function,

$$p(r,z) \simeq \frac{i}{\sqrt{8\pi r}} e^{-i\pi/4} \sum_{m=1}^{\infty} \Psi_m(z_s) \Psi_m(z) \frac{e^{ik_m r}}{\sqrt{k_m}}$$

Transmission Loss

$$\mathrm{TL}(r,z) \simeq -20 \log \left| \sqrt{\frac{2\pi}{r}} \sum_{m=1}^{\infty} \Psi_m(z_s) \Psi_m(z) \frac{e^{ik_m r}}{\sqrt{k_m}} \right|.$$

Example: Isovelocity profile (c(z) = 1500 m/s)

• Solve for the modes

$$\frac{d^2\Psi_m(z)}{dz^2} + \left[\frac{\omega^2}{c^2} - k_m^2\right] \Psi_m(z) = 0$$

$$\Psi(0) = 0$$

$$\frac{d\Psi}{dz}\Big|_{z=D} = 0$$

General solution:

$$\Psi_m(z) = A\sin(k_z z) + B\cos(k_z z) ,$$

where the vertical wavenumber k_z is:

$$k_z = \sqrt{\left(\frac{\omega}{c}\right)^2 - k^2} \ .$$

- Top BC implies B = 0.
- Bottom BC implies

$$Ak_z \cos(k_z D) = 0 ,$$

requiring

$$k_z D = \left(m - \frac{1}{2}\right) \pi , \qquad m = 1, 2, \dots ,$$

Thus,

$$k_m = \sqrt{\left(\frac{\omega}{c}\right)^2 - \left[\left(m - \frac{1}{2}\right)\frac{\pi}{D}\right]^2}, \qquad m = 1, 2, \dots$$

• Corresponding eigenfunctions are given by

$$\Psi_m(z) = \sqrt{\frac{2}{D}} \sin(k_{zm}z)$$

• Sum up the modes to get the pressure field

$$p(r,z) = \frac{i}{2D} \sum_{m=1}^{\infty} \sin(k_{zm} z_s) \sin(k_{zm} z) H_0^{(1)}(k_m r)$$

Numerics

Recall the modal equation:

$$\Psi''(z) + \left[\frac{\omega^2}{c^2(z)} - k^2\right] \Psi(z) = 0,$$

$$\Psi(0) = 0,$$

$$\Psi(D) = 0.$$

Finite-difference approximation $(\psi_j = \Psi(z_j))$:

$$\psi_j'' = \frac{\psi_{j-1} - 2\psi_j + \psi_{j+1}}{h^2} + O(h^2) .$$

$$\frac{\psi_{j-1}}{h^2} + \left\{ \frac{-2}{h^2} + \frac{\omega^2}{c^2(z_j)} - k^2 \right\} \psi_j + \frac{\psi_{j+1}}{h^2} = 0, \qquad j = 1, \dots N - 1$$

$$\psi_0 = 0$$

$$\psi_{N+1} = 0$$

Matrix form

$$\left[\mathbf{A} - k^2 \mathbf{I}\right] \psi = 0 .$$

This equation has N eigenvalues $k^{(m)}$ and corresponding eigenvectors $\psi^{(\mathbf{m})}$. $\psi^{\mathbf{m}}$ is the vector with components $\Psi^m_1, \Psi^m_2, \dots \Psi^m_N$. Thus, $\psi^{(m)}_j \simeq \Psi_m(z_j)$

$$\mathbf{A} = \begin{bmatrix} d_1 & e_2 & & & & & & & \\ e_2 & d_3 & e_3 & & & & & \\ & e_3 & d_2 & e_4 & & & & & \\ & & \ddots & \ddots & \ddots & & & \\ & & e_{N-2} & d_{N-2} & e_{N-1} & & & \\ & & & e_{N-1} & d_{N-1} & e_N & \\ & & & & e_N & d_N \end{bmatrix}$$

where,

$$d_j = \frac{-2}{h^2} + \frac{\omega^2}{c^2(z_j)}, \qquad e_j = \frac{1}{h^2}$$

Mode Normalization

The integral term can be evaluated by the trapezoidal rule. That is,

$$\int_0^D \Psi_m^2(z) dz \simeq h \left(\frac{1}{2} \phi_0 + \phi_1 + \phi_2 + \dots + \phi_{N-1} + \frac{1}{2} \phi_N \right) ,$$

where

$$\phi_j = \left(\psi_j^{(m)}\right)^2 .$$

Say it all in matrices:

1. Solve the algebraic eigenvalue problem $\mathbf{A}\psi = \lambda\psi$ (**A** defined above).

Result: $\psi^{(\mathbf{m})}, \lambda^{(m)}, m = 1, \dots, N$.

Note: $k_m \leftarrow \sqrt{\lambda}$.

- 2. Sort k_m and keep the modes with the largest real part.
- 3. Normalize the eigenfunctions

$$\psi^{(m)} \leftarrow \frac{\psi^{(m)}}{\|\psi^{(m)}\|}$$

4. Assemble the eigenvectors into a matrix

$$\psi = \left[\psi^{(1)} \ \psi^{(2)} \ \dots \ \psi^{(\mathbf{M})} \right]$$

 $(\psi_{im} \text{ is the } i \text{th element of the } m \text{th mode.})$

5. Calculate mode excitation coefficients **C**:

$$\mathbf{C} \leftarrow \left[egin{array}{c} \psi_{isd,1} \ \psi_{isd,2} \ dots \ \psi_{isd,M} \end{array}
ight]$$

6. Calculate $\tilde{\psi}$, a mode matrix scaled by the mode excitation:

$$\tilde{\psi} \leftarrow \psi \left[\begin{array}{ccc} 1/C_1 & & \\ & \ddots & \\ & & 1/C_M \end{array} \right]$$

7. Calculate the Φ is a phase matrix:

$$\mathbf{\Phi} \leftarrow \begin{bmatrix} 1/\sqrt{k_1} & & & \\ & 1/\sqrt{k_M} & & \\ & & 1/\sqrt{k_M} \end{bmatrix} \begin{bmatrix} e^{ik_1r_1} & e^{ik_1r_2} & \cdots & e^{ik_1r_{NR}} \\ e^{ik_2r_1} & e^{ik_2r_2} & & & e^{ik_2r_{NR}} \\ \vdots & \vdots & & & \vdots \\ e^{ik_Mr_1} & e^{ik_Mr_2} & \cdots & e^{ik_Mr_{NR}} \end{bmatrix} \begin{bmatrix} 1/\sqrt{r} \\ e^{ik_Mr_{NR}} \\ e^{ik_Mr_{NR}} \\ e^{ik_Mr_{NR}} \end{bmatrix}$$

8. Sum up the modes:

$$p = \tilde{\psi} \mathbf{\Phi}$$

$$p(r,z) \simeq \frac{i}{\sqrt{8\pi r}} e^{-i\pi/4} \sum_{m=1}^{\infty} \Psi_m(z_s) \Psi_m(z) \frac{e^{ik_m r}}{\sqrt{k_m}}$$

where,

Adiabatic Modes

As the modes propagate in a range-dependent environment, they continue shape.

As they change shape, energy is continously re-distributed amongst the lo

However, for sufficiently slowly-varying environments the energy mostly same mode.

Then, the acoustic field can easily be computed using the adiabatic mod

$$p(r,z) \simeq \frac{i}{\sqrt{8\pi r}} e^{-i\pi/4} \sum_{m=1}^{\infty} \Psi_m(z_s) \Psi_m(r,z) \frac{e^{i \int_0^r k_m(r') dr'}}{\sqrt{k_m(r)}}.$$

FAST FIELD PROGRAM

Apply a Fourier-Bessel transform to the Helmholtz equation:

$$g(k,z) = \int_0^\infty p(r,z)J_0(kr)rdr$$

$$\Rightarrow \frac{d^2g}{dz^2} + \left(\frac{\omega^2}{c^2(z)} - k^2\right)g = \delta(z - z_s),$$

$$g(0) = 0, \qquad \frac{dg}{dz}(D) = 0$$

The pressure field is reconstructed using the inverse transform:

$$p(r,z) = \int_0^\infty g(k,z)J_0(kr)kdk$$

which can be efficiently evaluated using an FFT (Marsh, DiNapoli(1967)):

$$p(r,z) pprox rac{e^{i\pi/4}}{\sqrt{2\pi r}} \int_0^{K_{max}} g(k,z) \sqrt{k} e^{ikr} dk.$$

Matrix form

$$\left[\mathbf{A} - k^2 \mathbf{I}\right] \mathbf{g} = \delta .$$

$$\mathbf{A} = \begin{bmatrix} d_0 & e_1 \\ e_1 & d_1 & e_2 \\ & e_2 & d_2 & e_3 \\ & & \ddots & \ddots & \ddots \\ & & & e_{N-2} & d_{N-2} & e_{N-1} \\ & & & & e_{N-1} & d_{N-1} & e_N \\ & & & & & e_N & d_N \end{bmatrix}$$

where,

$$d_j = \frac{-2}{h^2} + \frac{\omega^2}{c^2(z_j)}$$

$$e_j = \frac{1}{h^2}$$

- ullet This is a linear system of N equations.
- \bullet δ is a function that is 1 at the source depth and 0 elsewhere.
- ullet For each choice of the horizontal wavenumber k we get a response g(k,

Overview of the numerical procedure

- 1. Set up the matrix \mathbf{A} .
- 2. Define a sequence of wavenumbers

$$\{k_j = k_{min} + j\Delta k + i\alpha, j = 1, NK\}$$

$$\Delta k = \frac{k_{max} - k_{min}}{NK - 1}$$

$$\alpha = \Delta k$$

- 3. Solve $[A k_j I]g = \Delta$ for each wavenumber k_j . (Result is a matrix **g** with $g_{ij} \simeq g(z_i; k_j)$
- 4. Multiply by \sqrt{k} :

$$\mathbf{g}^{\mathbf{T}} \leftarrow \mathbf{g} \begin{bmatrix} 1/\sqrt{k_1} & & \\ & \ddots & \\ & & 1/\sqrt{k_{NK}} \end{bmatrix}$$

5. Do an FFT: g(r,z) = FFT(g(k,z))

6. Put in the cylindrical spreading and damping factor.

$$p = \mathbf{g} \begin{bmatrix} e^{\alpha r_1} / \sqrt{r_1} & & \\ & \ddots & \\ & & e^{\alpha r_{NR}} / \sqrt{r_{NR}} \end{bmatrix}$$

PARABOLIC EQUATION MODELING

(following Tappert and Hardin (1973))

Recall, Helmholtz equation:

$$\frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} + \frac{\partial^2 p}{\partial z^2} + k_0^2 n^2 p = 0,$$

Seek,

$$p(r,z) = \psi(r,z)H_0^{(1)}(k_0r),$$

where $H_0^{(1)}(k_0r)$ is the Hankel function and satisfies:

$$\frac{\partial^2 H_0^{(1)}}{\partial r^2} + \frac{1}{r} \frac{\partial H_0^{(1)}}{\partial r} + k_0^2 H_0^{(1)} = 0,$$

We find,

$$\frac{\partial^2 \psi}{\partial r^2} + \left(\frac{2}{H_0^{(1)}} \frac{\partial H_0^{(1)}}{\partial r} + \frac{1}{r}\right) \frac{\partial \psi}{\partial r} + \frac{\partial^2 \psi}{\partial z^2} + k_0^2 (n^2 - 1)\psi = 0.$$

PE derivation continued ...

Far-field approximation to Hankel function:

$$\frac{\partial^2 \psi}{\partial r^2} + 2ik_0 \frac{\partial \psi}{\partial r} + \frac{\partial^2 \psi}{\partial z^2} + k_0^2 (n^2 - 1)\psi = 0.$$

(still elliptic and not marchable)

Small-angle approximation (this is not well-motivated yet):

$$\frac{\partial^2 \psi}{\partial r^2} \ll 2ik_0 \frac{\partial \psi}{\partial r}.$$

Gives the standard parabolic equation

$$2ik_0\frac{\partial\psi}{\partial r} + \frac{\partial^2\psi}{\partial z^2} + k_0^2(n^2 - 1)\psi = 0,$$

Starting Fields

We can't start the PE with a delta function because it radiates uniform and the PE abuses the high-angle paths.

Choices:

• Gaussian starter (just a smoothed delta function)

$$\psi(0,z) = \sqrt{k_0} e^{-\frac{k_0^2}{2}(z-z_s)^2},$$

- Modal starter
- Greene's source

$$\psi(0,z) = \sqrt{k_0} \left[1.4467 - 0.4201 k_0^2 (z - z_s)^2 \right] e^{-\frac{k_0^2 (z - z_s)^2}{3.0512}},$$

Numerics

Let $\psi_j^i = \psi(r_i, z_j)$, i.e. ψ^i is a vector that approximates the field at range

$$\frac{\partial^2 \psi}{\partial z^2} + k_0^2 (n^2 - 1) \psi$$

is approximately $\mathbf{A}\psi$ where

$$\mathbf{A} = \begin{bmatrix} d_1 & e_2 & & & & & \\ e_2 & d_3 & e_3 & & & & \\ & e_3 & d_3 & e_4 & & & & \\ & & \ddots & \ddots & \ddots & & \\ & & e_{N-2} & d_{N-2} & e_{N-1} & & \\ & & & e_{N-1} & d_{N-1} & e_N \\ & & & & e_N & d_N \end{bmatrix}$$

and,

$$d_{j} = \frac{-2}{h^{2}} + k_{0}^{2}(n^{2}(z_{j}) - 1)$$

$$e_{j} = \frac{1}{h^{2}}$$

Numerics (continued)

Recall,

$$2ik_0\frac{\partial\psi}{\partial r} + \frac{\partial^2\psi}{\partial z^2} + k_0^2(n^2 - 1)\psi = 0,$$

Thus,

$$2ik_0 \frac{\psi^{i+1} - \psi^i}{\Delta r} + A \frac{\psi^{i+1} + \psi^i}{2} = 0$$

Rearrange,

$$\left[\frac{2ik_0}{\Delta r} + \frac{\mathbf{A}}{2}\right]\psi^{i+1} = \left[\frac{2ik_0}{\Delta r} - \frac{\mathbf{A}}{2}\right]\psi^i$$

Or,

$$\mathbf{C}\psi^{i+1} = \mathbf{B}\psi^i$$