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Introduction 
The 2D-MC program computes numerically the time dependent solution of Euler and 

continuity equations with adiabatic condition in a waveguide consisting of a homogeneous 
fluid layer overlying a rigid bottom, using the method of Characteristics (MC) with 
Semi-Lagrange scheme1, which is not constrained by Courant-Friedrichs- Lewy (CFL) 
condition. Comments and Bug report are welcome. 
 
Mathematical Formulation and Numerical Scheme 

The fundamental equations are written in cylindrical coordinates. The pressure release 
surface and rigid bottom are assumed at the upper and lower boundaries, respectively. 

One dimensional Euler and continuity equations with adiabatic condition are written in the 
form: 
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Multiplying Eq. (1) by ±c2 and adding to Eq. (2), we obtain 
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where 

,pcuf +=+ r     （5） 

pcuf -=- r     （6）. 

Equations (3) and (4) are advection equations with sound speeds of + c and –c, respectively. 

Quantities +f and -f  are advected along its characteristics. Therefore new values at the next 



time are determined if one can find the up-wind values along the characteristics as shown in 
figure 1. 
 

 
Figure1 The up-wind scheme of advection along the characteristics 

 

When CFL=1, +f and -f  propagate the values from a certain cell to the adjacent cell during 

time iteration. When CFL is not a natural number, Constrained Interpolation Profile (CIP) 
method2-3 is applied. By adding and subtracting Eqs (5) and (6), the pressure and particle 
velocity are therefore 
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For two dimensional cases, the fundamental equations cannot be exactly written in the form 
of advection equations. However, the equations can be solved using a directional splitting 
method. First one solves the advection equation in range direction, and then solves the 
advection equation in depth direction. An additional non-advection term is solved using a 
finite difference/element method after advection. 
 
Mesh Grid 

This program uses square grids and all physical quantities (the pressure and particle 
velocity) are collocated. 
 
 



The 2D-MC Program 
The 2D-MC program is consisted of several modules written in Matlab. These modules are: 
MC.m: Main program, which is the main routine of 2-D MC and contains input parameters, 

mesh size, etc. 
cip_2d.m: Subroutine to compute advection. 
nmode_rigid.m: Subroutine to compute the normal mode solution. 

 
Input Parameters 

Input parameters are given in the main program. Variables are: 
f: frequency in Hz 
c0: sound speed in water column 
H: water depth 
zs: source depth 
zr: receiver depth 
tn: number of time iteration 
flag: when flag = 0, the program computes propagation loss of CW at t = tnDt and 

compares with normal mode solution. When flag is a natural number, the program computes 
PCW propagation and runs an animated image of the pressure fields. The number denotes the 
pulse length (e.g. flag =2 generates 2-wavelength PCWs). However, the pulse is modulated by 
hanning window. 

Mesh size of space is one twentieth of the wavelength as a default. The time step is 
automatically determined by satisfying CFL=1. 

 
Comments on Computational Time and Accuracy 

No difference would be found in computational time between the Finite Difference Time 
Domain (FDTD) and MC methods per iteration, the FDTD is, however, constrained by more 
severe CFL condition: 
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When the square grid is applied, the maximum value is CFL= 21 so the FDTD requires at 

least 1.4 times computational time. 
Furthermore, the phase properties of the MC are more accurate than the FDTD. The 

difference is not prominent in low frequencies but would be found as frequencies increase.  
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