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OBJECTIVE

Translate well-known differential equation solutions into a working program to com-
pute propagation in underwater acoustic ducts. Document the program methods, to assist
users of this and similar programs.

RESULTS

l. An effective program for computing propagation loss in a layered ocean by normal
modes has been developed. Complete documentation for the program is contained herein.

2. Sediment layers are modeled as fluids in which densities, sound speeds, and absorp-
tion can be specified. This permits a complete wave solution for bottom reflected sound
energy.

3. A continued fraction technique for evaluating asymptotic series is shown to give
superior results in evaluating the auxiliary functions required in this program, the modified
Hankel functions of order 1/3.

4. A mode follower program given here is useful in tracing eigenvalues. Such traces
are needed to understand the eigenvalue structure.

RECOMMENDATIONS

l. Improve the mode locating ability of this normal-mode program to make it self-
contained. It currently requires user interaction to locate eigenvalues.

2. Investigate methods to incorporate the effect of rough boundaries into this
program.
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INTRODUCTION

This report describes a normal-mode program that has been used successfully for 12
years to compute sound propagation in idealized underwater acoustic ducts. The theory and
considerations used in developing the program are discussed here, and a copy of the FOR-
TRAN statements are included as appendix A. Appendix B consists of sample inputs and
outputs to assist users in gaining familiarity with the program. It is hoped that this report
contains sufficient information to allow a user to run the program and to modify it as desired.

This program follows the methods developed by Furry and Freehoffer (ref l) to com-
pute electromagnetic propagation in the 1940s. Marsh adapted these methods to underwater
sound in his doctoral thesis (ref 2). Using this material, Pedersen, at NOSC in the late 1950s,
adapted the method to digital computers and developed the programs to compute the auxil-
iary functions. This original program used two layers to define the sound-speed profile(ref 3).
This program was expanded to three layers by DF Gordon and RF Hosmer and finally to the
multiple-layer program reported here. In this program the only constraints on the number of
layers are computer space and running time. The program is normally configured to permit
up to l2layers.

The earlier programs were used to study sound propagation in ocean surface ducts.
Programs that permit more layers have proven useful also for studying propagation in the
deep ocean, although the number of modes required generally limits computations to fre-
quencies below 300 Hz. The multipleJayer program has also proven useful in modeling sedi-
ment layers and thus in computing shallow-water propagation.

The principal limitation in the application of this program to real-world situations is
the requirement of ideal conditions: boundaries must be smooth and horizontal, and no
variation of boundary conditions with range is permitted. Despite this limitation, the pro-
gram has proven useful in predicting and explaining acoustic propagation and has applications
in a number of related areas. These include checking other types of wave-theory models or
corrections such as caustic corrections; determining group velocities, dispersion curves, and
reflection coefficients; and determining acoustic coupling between ducts.

The following paragraphs describe the specific topics covered by the sections in this
report. In GENERAL SOLUTION are the equations required to solve the wave equation
with the boundary conditions used here. DETERMINANT is part of the basic solution but
is concerned with the particular numerical method used in this program to evaluate the con-
ditions imposed by the boundaries. Other approaches could be used instead. A later section,
NUMERICAL BREAKDOWN, is also part of the basic solution, but deals with special numer-
ical problems that have arisen but are not apparent from the basic equations.

1. The Bilinear Modified-Index Prot'ile, by WH Furry, in Propagation of Short Radio Waves, DE Kerr, ed;
MIT Rad [-ab series, vol 13, p 140-168, McGraw-Hill, New york, 1951.
Navy Underwater Sound Iaboratory Report I I I , Theory of the Anomalous Propagation of Acoustic
Waves in the Ocean, by F{W Marsh, 1950.
Normal-Mode Theory Applied to Short-Range Propagation in an Underwater Acoustic Surface Duct, by
MA Pedersen and DF Gordon; J Acoust Soc Am, vol 37, p 105-l l g, January 1965.

J.



FINDING EIGENVALUES deals with the philosophy of eigenvalue location employed

by this program, which essentially leaves this function to the user, the plogram only serving as

a toot. It ,ho*. how the program is used to make computations'

Several "automatic" mode finding versions of this program have been developed to

the point of accommodating certain classes of profiles' However, they need further develop-

ment and have not yet been reported'

souND SPEED PROFILE indicates the required equations for curve fitting and the

various ways the sound speed can be read in on cards. A continuous water profile can be

entered quite simply, bui sediment layers with sound speed discontinuities and absorption

gradients can become complicated'

REFLECTIONCOEFFICIENTSANDOTHERAUXILIARYOUTPUTSdescTibeSa
short subroutine that computes reflection coefficients for any mode at a given profile inter-

face. Intermode interference lengths and mode damping coefficients are also discussed'

CoMPUTATIoNoFTHEMODIFIEDHANKELFLINCTIONSgivestheanalysis
necessary for computing these functions. The use of continued fractions to evaluate an

asymptotic series is discussed. To facilitate rutlning the program on computers of different

word length, this section provides the information required to optimize the functions for

the different word lengths'

MODE FOLLOWER PROGRAM describes a separate but related progfam for investigating

the eigenvalues themselves rather than using them to compute oropagation losses.

GENERAL SOLUTION

The derivation of the normal-mode solution has been discussed from various points

of view (eg ref l, 4, 5). Only an outline is given here. In general, the time-independent wave

equationiswritteninpolarcoordinatesandtheazimuthalcoordinateisdroppedunderthe
assumption that the filta is independent of azimuthal direction' Thus

(1/r) (D/0r) tr(arl/ar)l + @2lr lAz21 * 621"2) { = 0,

where r/ is the velocity potential, c the sound speed' and

z, and range, r.
the independent variables are depth,

(1)

Equation (l) is then separated into range- and depth-dependent parts with a separation

constant ).. The separation is possible when the sound speed is a function of depth only'

After accounting for the source discontinuity and the outgoing radiation c,ondition, integrating

over all real values of the separation constani, and normalizing, one can find the solution for

a field point in terms of propagation loss H as follows:

Naval Air Development center Report NADC-72002-AE, Normal Mode Solutions and computer Programs

for underwater Sound Propagation, by cL Bartberger and LL Ackler,^4 April 1973.

;-;r-"t ffi;il;;;; "i.,i u"a.t*ater AcoustiJ Duct by Means of Green's Functions, bv RL
4.

Deavenport; Radio Sci, vol 1, p 709-724,1966'
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H = -10 rosl orol " )I n=l

Hfr anrl ur,(z) Un(26)
2

* a4r, (2)

where r is the range, zg is the source depth, z is the receiver depth, Ufr i, tir" Hankel function
of order zero, second type, Ln is the nth eigenvalue, U' is the depth function for mode n,
and pr and py are the densities at source and receiver. The sum is over the number of modes,
N, making a significant contribution. The final term contains the volume attenuation coeffi-
cient, a4. From Thorp (ref 6), a4 in dB/m is computed by the relationship

0.9144a4 = 0.000 t FzlG + 12; + o.o4F2l@t00 + F2y, (3)

where F is the frequency in kHz. Improved equations or those for specific ocean areas can
be easily substituted. The depth function, Urr, is a solution to the depth-dependent part of
the separated wave equation

a2v 1az2 + lu2 lc2(z) - 12l U = o,

where

a = 2trf

and f is the frequen cy , in Hz.

A closed-form solution to eq (4) can be obtained when the reciprocal sound speed
squared or squared index of refraction is a linear function of depth. That form is used in
this program, and sound speed in each layer is expressed as follows:

[cilc(z))2 = I -2ti@-zi)lci, (5)

where ci, zi, and 'yi are the sound speed, depth, and sound-speed gradient, respectively, at the
top of layer i. Up to l2 such layers are permitted by the program, for modeling the sound-
speed profile.

With this expression for sound speed, solutions to eq (4) can be expressed in terms
of solutions to Stokes' equation

h"+zh=O. (6)
only a simple change in independent variable is required from z to f , where

6. Analytic Description of the Low-Frequency Attenuation Coefficient, by WH Thorp; J Acoust Soc Am,
vol 42, p 270,1967 .

(4)

and

ti(z)= l^?u-z)+ a)2lc? -^') p?

3 ^ c,3ai = -l'Yi Q'lci

(7)

(8)



The solutions to stokes' equation that are used are the modified Hankel functions of order

1/3, h1(l) and h2(f). Theiepth function is a linear combination of these two independent

solutions:
(e)

Fn,1(z)= An,ih1(fn) + Bn,ih2(fn)'

where F,' is the unnormalized form of Un. The coefficien.ts'a''.i and Bn; for mode n in layer

i are determined to satisfy boundary .onii,io.,r, which will be iisted bel6w' Values of )'" for

whichtheboundaryconditionscanbesatisfiedaretheeigenvalues.

The first boundary condition is the radiation condition. It is satisfied by using a nega-

tivesound-speedgradientinthedeepestlayer,whichextendstoinfinitedepth'andbyletting
the depth function there be proportional to h2 only' That is'

Fn(z) = Bnh2(fn).

At the surface the depth function is zero:

Fn(O) = 0,

andatlayerinterfaces,pUanditsdepthderivativearecontinuous:

PiFn,i(z) = Pi+l Fn,i-''1 (z)l

dF n,{z)ldz = dFn,i11(z)/dz.

Here pi is the density in layer i, and the excess acoustic pressure, p, is given by

p=pu.
If U is assumed to be the vertical component of the velocity potential' eq (12) and (13) are

equivalent to requiring that the pressure and the vertical component of particle velocity be

continuous across the layer interface'

Applying these boundary conditions to a sound-speed profile consisting of M layers

results in 2M - 1 linear equations in h1 and h2. They are homogeneous in that the constant

is zero in each equation. There are M - I coefiicients Ai to be determined and M coefficients

Bi.ThesecoefficientscanthereforebedeterminedwithinaconstantofproportionalityD,
provided the system of equations is linearly dependent' That is, the 2M - I square matrix of

coefficients of R' anJ n' must be of rank 2M - 2 or less' Its determinant will then be zero'

This is the eigenvalue condition. values of ). must be found which make the determinant

zero.Thisdeterminant,G'isdiscussedinmoredetailinalatersection.

Zeroes of the determinan t,G,are found by using the secant method. The variable in

this iterative method can as well be some function of )' as )' itself' and we use the foll0wing

complex Phase velocitY (v):

(1 0)

(l l)

(t2)

(1 3)

(14)
trn = c,.l/vrr.

To find a v that is a root of G requires an initial guess' v 1 ' 
where the subscript I refers to the

step in the iteration and a small increment, 6 1' Each su-ceeding estimate is given by the

relationshiP



vi+l=uj*6j,
where

6i = -(vi -u3_r) cj/(cj -c3_r).

The details of this iterative process are given in a later section.

When an eigenvalue v' is found, the coefficients are then evaluated. One coefficient
can be given an arbitrary value, so A1 is set to pltr2tf t(0)1. From eq (l l), B1 is then
-plhl tf t(0)1. Pairs of equations (eg (12) and (13)) for each successive interface can then
be used to evaluate the next Ai and Bl as discussed later.

Finally the normalizing factor, Dr' for mode n is obtained by the relationship

7)Dn= J orit}az. (16)
0

This equation follows from the orthogonality. of the depth functions. It is not the pressure,
however, which is proportional to pU, but plrlJ that is orthogonal (ref 7). Therefore, D'
must be determined such that the integral of pU2 is l.

From Stokes' equation (eq (6)) and eq (1.-9), the integral of F2 takes the form

(1s)

(t7)

(le)

the contribution of eq (17) at

zi+l
f

J
zi

Therefore

p2 K) az= 
frir,r 

e z *t f ̂i . r'., K, f ̂ tll',',,. 
t

nn = -nf w 2 
I u t *5 

{ 

r, t t, zi,,) I ai- pitil 
1 

(2i.,, r )/(a1*, pi1 
1 )t rl rzia 1)

.(r^? - oia1ta3r*r1 .1,r,,*,1] , (r8)

where eq(12) and (13) have been used to combine terms at each interface. The derivative of
F takes the form

Fi(2111) = u, {n,ni K1(21*1)l + Bihitfl("111)Ji .

The Wronskian, W, is an imaginary constant (see eq (85)) and is
the surface:

W = -1 .45749544104i.

7. Some Effects of Velocity Structure on Low-Frequency Propagation in Shallow Water, by AO Williams;
J Acoust Soc Am, vol32, p 363-365, March 1960.



The depth functions are normalized by the relationship

un(zg) Un(z) = Fn(zg) Fn(z)/Dn'

The functions F and F' used in computing Dn are conveniently assembled from the

elements of the determinant and the coefficients ,{1 ind B1. This requires care in developing

the computer code, because F is always multiplied ty p and F' has the term al in it' The sur-

face differs from the other layers in that F1 is zero there and li' UV eq. (19)' isalW' How-

ever, because pI appearsasa factor in the coefficients of F1, the actual,uatuTof f! aJine

surface in the "o-pu,u,ion 
is p 1 a 1W. This fact91 

^o.f 
p 1 together with the O l'z 

needed for

orthogonality, when squared, gives the nJ of eq (18)

DETERMINANT

Normalmodesaredeterminedbyfindingtheeigenvaluesofacharacteristicequation
which, in turn, is obtained by setting a determinant to zero' The determinant is obtained

from the coefflcient matrix of a set of linear, homogeneous equations expressing the bound-

aryconditionsasgivenbyeq(10)-(13).Sincethemethodofhandlingthisdeterminantis
acentralfeatureofthisnormal-modeprogram'itisgivenindetailhere.

The first line of the matrix is taken from eq (11) as

B1p1h2trl(0)l + A1 P1 h1 [lt (0)] = 0'

At each profile interface, i, where i numbers the interfaces below the surface from I to
N-1, the two boundary conditions given by eq (12) and (13) are

Bi oih2K1 (2111)J + Ai Pi h1 tf1 (21.'1)J - Bi+l pi+lh2[i1a1 (zia1)J

-Ai+t Pi+1 hl [11q1 (zia1)J - 0

and

Biaih2tfl (zi1i)l + Aq ai hi tli(2i11)l - Bi+t ui+1h'2 [f111 (2111)l

-Ai+l ui+t hi [f1a1 (2111)J - 0 '

The coefficients of Ai in the first equation and Bill in the second will be the diago-

nal elements of the matrix. The nonzero elements of the matrix will therefore be no more

than two places from the diagonal. The matrix can be stored in the computer in an array of
size (2M-1) X 4, where M is the maximum number of layers in the sound-speed profile' In
the final layer, AN ht is omitted, as in eq (10). In the program, the real and imaginary parts

are stored in seParate arrays.

The sparseness of the matrix permits efficient evaluation by a triangularization
process of row reduction. For each pair of rows representing a pair of equations given by

eq(22)and(23),thefirstelementfromthefirstequationandthefirsttwofromthesecond
equation must be set to zero by subtracting the proper multiple of preceding rows' The

determinant is then the product of the diagonal elements of the triangularized matrix' The

value of the determinu,rt, G, is used in eq (15) to find the roots by iteration'

(20)

(21)

(22)

(23)



Note that a value of v that makes this determinant zero, or near zero, ordinarily is
zero because only one diagonal element is very small. For trapped modes this element is at
the row representing the first interface below the mode, ie the interface just below the layer
of positive gradient in which the sound speed is equal to the mode phase velocity. For
unstrapped modes it is usually the final diagonal element that is small. Thus the layers in
which the sound speed is greater than the phase velocity of a mode do not greatly affect the
eigenvalue. Eigenvalues are determined mainly by those parts of the sound-speed profile
that are less than the phase velocity.

When an eigenvalue is found, the coefficients Ai and Bi must next be evaluated. As
mentioned earlier, one coefficient can be arbitrarily chosen. This is done, and eq (21) is satis-
fied by letting

A1= o1h2lf1(0)l
and

Bt = -p1h1t11(0)1.

The factor P1 is used simply because the number containing it is easily available in the pro-
gram. It is divided out by the normal2ing factor, D. Eq (22) and (23) can then be used to
evaluate the remaining coefficients, but the triangularized form of the matrix yields the coef-
ficients with less computation. If gi1 is the element in the ith row and jth column of the tri-
angularized matrix, then by Crameris rule,

Bi = Ai-l Ezi-2,2i-2e2i-l,zilBi

and

Ai = -Ai-l E2i-2,2i-Z e2i-1,2i-l lEi,

where

E i = E 2i-2, zi- I g 2i- l, 2i - g 2i-2, 2i c 2i- l, 2i- l .

A simpler form is used for Bp in the final layer since there is no Ay there.

In certain situations numerical problems can arise in evaluating the determinant.
These require some extra tests in the subroutine that makes the evaluation. The extra tests
will be discussed in the section, NUMERICAL BREAKDOWN. A more routine problem is
the loss of accuracy that can arise in subtractions in the row reduction of the matrix. This
loss results in less sharpness of convergence to a root. The size of the determinant, G, can be
l4 orders of magnitude less at a root than at the general background near the root. This
variation occuts because the modified Hankel functions can be computed to about l4-place
accuracy in a computer with 18 decimal places available. Modes usually converge to l0 or
l2 places; thus a few places are lost in evaluating the determinant. In some profiles, usually
those with multiple ducts or those in which propagation through bottom sediments plays a
large part, the convergence can be much poorer. Modes need to converge to about 4 places
to be reliable for computing losses, and convergence occasionally fails to meet this require-
ment. The only current cure for this loss in accuracy is to go to higher-precision arithmetic
or to compute the modified Hankel functions to greater aaavraay. For instance, a standard

(24)

(2s)



matrix triangularization routine that uses full row and column pivoting has been tried with

no resultant increase in accuracy'

FINDING EIGENVALUES

There are versions of this program under development that will locate the eigenvalues

anddotheentirecomputationwithoutuserintervention.Currently,however,theseversions
are reliable only for the simpler types of profiles - usually those with only one duct - and

are not ready to b. ,;;;;i;d'. mluting eigenvalues with the standard version of the progmm

is discussed here.

The standard version of the plogram requires the user to find the eigenvalues' In this

version, each time an eigenvalue is determineo ty iteration, the resulting value is stored and

counted as an eigenvalue. Therefore, the user must ensufe that all iterations result in good

roots, that all required modes have been determined, and that no modes are present more

than once. In most cases the user must expect to make more than one computer run to

obtain this result.

CONTROL CARDS

Theusercontrolstheeigenvaluedeterminationbyusinganyoffourdifferenttypes
of control cards. The first type specifies an initial value for v and an initial step size' Av'

These are both complex numbers with a real and an imaginary part' G is then evaluated at v

and at v * Av to stait the iteration. These are essentially the uj u.li "j*l t-lt:!1"5)' If these

twotrialeigenvaluesareinthevicinityofaroot,theiterationwillconvergetothatroot.

The second type of card specifies a line segment in the complex plane' along which a

search for eigenvalues, v, is made. The end points of the line are given along with the number

of equally spaced pointsat which the line is to ue divided' G is then evaluated at each suc-

cessive division point along the line until a relative minimum in lG2l is found, indicating that

arootisnearby.Theiterativeprocessisappliedtofindthe-root.Theinitialstepsize,Av'is
first computed to bJng the sectnd evaluation at v * Av as close as possible to the true root'

This is done by using the point which resulted in minimum 1G2l and the points on either side

of it to determine ttie minlmum of the parabola passing through them' If v - h' v' and v a h

are the three point, ut *t i.t G was evaluated, itlollows that the distance from v to the mini-

mum of the Parabola

Av = hlG(v + h) - G(v - h)l l2l2G(v)- G(v + h) -G(v -h)l' (26)

When the iteration is complete, the eigenvalue is recorded and the program continues

to step along in the direction of the given linel checking again for a minimum' However' the

stepping is resumed from the newly located root rather than from the approximate location

where the minimum was detected. with this correction in position' the designated line does

not have to hug the curve on which the eigenvalues are located because it is corrected at each

eigenvalue.

ThismethodoffindingeigenvalueshasprovenverySuccessful'Itsmainutilityadses,
though, because the eigenvalues of the trapped modes have negligible imaginary parts and the

10



search can be made along the real line. ln simple profiles this can often give a successful set
of modes on the first try. Usually, only the three initial eigenvalues need to be located by
this means because further eigenvalues can be located by extrapolation on the previous three.
This is the function of the third type of control card.

The third type of card specifies the number of additional modes to be determined by
extrapolation. The starting value of each eigenvalue is determined by extrapolating from the
three most recently determined eigenvalues to find v. The step size, Av, is chosen as 0.0001
times the distance between the last two eigenvalues. The exact eigenvalue is then determined
by iteration. The extrapolation is the simple parabolic form for equal steps:

v = 3vn - 3un-l +Yn_2. (27)

This method of locating modes works well when the modes lie along a smooth curve,
as usually occurs for single ducts. But this relationship does not always occur for profiles
with multiple ducts.

The final control card is punched by the program when requested and contains the
correct eigenvalue to full precision. Upon encountering this card, the program does not
iterate, but instead evaluates G for this eigenvalue and stores this value of G as the next
eigenvalue. A deck of such completed eigenvalues can be stored, saving the expense of
recomputing the eigenvalues for a given profile and frequency.

ITERATION TERMINATION

A full description of the iteration of eq (15) should include the method of termina-
tion. The usual criterion for stopping is that G fails to become smaller. As G approaches
minimum size, however, round-off error can act as noise so that G is no longer a predictable
function of v. The denominator of eq (15) can then be very small by chance, resulting in a
large value for 6i. If this happens, the next value of v, which was as near to the root as pos-
sible, will be far away. A much better convergence criterion is that 6; has reached a minimum
in absolute value. In the program, iteration is stopped when 162; exceeds the previous value
by a factor of 2. However, this criterion is not applied until three iterative steps have been
completed, to permit the process to become well established. An upper limit of l5 iterative
steps is permitted. We have not found an improvement on the root after 15 steps.

SOUND SPEED PROFILE

The normal mode program requires as inputs the depth of each layer and the sound
speed and sound speed gradient at the top of each layer. These variables are mapped into the
dimensionless internal variables of the program by eq (7). The purpose of the sound speed
profile processing portion of the program is to accept the profile parameters in a form con-
venient for the user and to translate them into the required sound speeds and gradients.

The first function of the processing program is to make the sound speed continuous
at interfaces. This is done simply by using the sound speed at the bottom of one layer as the
sound speed at the top of the next. It may be necessary to compute the sound speed at the
bottom of the layer. The necessary parameters will have been given. Occasionally a
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discontinuity in sound speed is required, as when modeling an interface between water and

sediment. The user indicates this by ,p..ifyit'e the sound speed at the top of the layer' If
leftblank,theprogramprovidesthesoundspeednecessaryforcontinuity.

Asecondfunctionoftheprocessingprogramistopermitalayertobedefinedbythe
sound speed at ,op *Jto,tom oi the layei iather than by one sound speed and one gradient'

Note that the profile form as given by eq (5) is a two-parameter curve'

The last layer extends to infinite depth, so a gradient must be specified at the top of

it. However, this gruoirn, can be ,p"criJiv gi"irg u aegtfr and sound speed point below the

lastlayer.ttreprogramhandlesthisby"t'""tingtJseeiithegradientofthelastgivenlayer
is unspecified. If it ir, lt " ,"mber of layers is reduced by one, which causes the last layer to

be only the requirej;;;. foint aeterminine the final gradient. This final gradient must

always be negative, us i. r.iuired by the borindary conditions' The progmm user must ensure

that this gradient is negative and that t";;i;;is zero' A zero gradient will appear in the

denominator of eq (7)'

These functions of the profile processing program are relatively simple' but an addi-

tional capability used to model ,"Ai*.niuoitoirs gr"atty increases the complexity of the

program. The capability required is to t;;;tft ttre-ausorption in a layer by adding an imagi-

nary part to the ,orrrrJ ,p."i. In olde-r versions of this normal mode program an imaginary

part, expressed as nn uurorption coefficiJrl,."rro be added to the sound speed at the top of

the layer. rrris imagrn ^r, i^uis small compared to the real part. Since tire gradient was

assumed real at the top of the layer' the imaginary part was initlutty not changing with depth

and it usually changed only a minor u,,'*ni"trt'ough the depth of the layer' However' this

small chang" "o,.rtoirot 
ui*uv, be relied ufon' mto Hamilton (ref 8) has published data on

absorptiongradientsinsedimentlayers,,o*o,,preciseco^ntrolofthispartofthesound
speed function r. n..J.d to model ,.Oi1nttlitvt"' T.fttttfore' a more comprehensive profile

processing routine has been incorporatJ ir trr" normal mode program' This curve-fitting

process is described below'

Thefollowingquantitiescanbeinputforeachlayerdepthstartingatthesurface:

DePth of toP of the laYer

Sound sPeed at toP of laYer

Sound sPeed at bottom of laYer

Real part of sound speed gradient at top of layer

Attenuation in loss per km at the top of the layer

A similar attenuation at the bottom of the layer

DensitY in the laYer

The density is a constant in the layer and as such requires no further curve fitting' Redun-

dant parameters are left blank on input cards' In some cases negative values serve as flags to

indicate specific treatment. For instance a negative value of absorption at the top of a layer

ffisaFunctionofDepthintheSeaF1oor,byELHami1ton;JAcoustSocAm,vol59,
p 528-535, March 1976'
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directs the program to use the same imaginary part of sound speed as occurred at the bottom
of the previous layer. Similar flags at the bottom of a layer are discussed later.

Absorption per Hz is given in units of decibels per km (or kiloyard). The quotient of
absorption over frequency is used because Hamilton (ref 8) usually considers absorption (or
attenuation) as proportional to frequency with a coefficient k. We use the symbol h instead.
That is,

a=hf.
We interpret a to be in units of dB per km and f inHz, whereas Hamilton uses dB per m and
kHz;but the coefficients h and k remain equal.

The complex wave number in layer i is represented as

ki= a:lCi

= c^rReclcl-2 -i-l^c1gyz. e8)
A plane wave will be attenuated a dB per km if

Imki = -alQ1 000log e)

= -zrAf e9)
where

A= hl(20 000 zr log e).

By equating the imaginary part of k1 in eq (28) and (29), the imaginary part of Ci is found to
be as follows:

Imci = r/A- t rlr2 -1nec)2)%. (30)

If q is zero, which is the case usually used in waterlayers, eq (30) cannot be used;but the
imaginary part of C is then simply zero. These two cases are treated separately in the program.

When sound speed is given at the top and bottom of layer i, the imaginary parts of
the sound speeds are determined by eq (30) and the only curve fitting task is to determine the
gradient 7i. Solving eq (5) for 7i,

))1
11 = C1(Cfr, - Ci)l2ci+r(2i11 - z). (31)

The gradient is a complex number since the C's here are complex. The z's are real.

A second version of this computation arises if the gradient is required to be a real
number. In this case, which is used to match older versions of the program, an additional
parameter must be left unspecified and this parameter is Im Cia1. This is equivalent to having
the sound absorption at the bottom of the layer unspecified. Therefore, a negative number
input for this parameter is used as a flag to call for this particular fitting procedure.
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For this situation, given Re Ci, Im Ci, Re C111, and making 1ir"?1., the. determination

of 7i and Im Ci11 " ""iii-tpfe. When 1i is etiminairi fto'n the real and imaginary parts of
eq (31), a quartic equation in Im Ci11 results. Rather than derive an algebraic solution to

this equation, it is solved by iteration-under Newton's method' A good first guess at the

solutionisImClll-ImCi.Fouriterationsusuallygiveanaccurateroot.Theequationis

Im c1 (Im ci*r)4 + [rrntci)3 + 2(Re ci*)2Im ci] (Im ci11)2

+ 2Re Ci..,.1 Re(Ci;3 tm Ci*1

+ Im ci(Reci*t)4 - (Re c111)z r-tci) = f(Im ci+t)'

The root is then found:

(Im Ci11), = (Im Ci+r)3_r -f lf' .

2Re Ci Re Ci*1

The gradient, 7, is next given by the relatt

-r, = {r- 
c, [in" cint)2- (rm c1*1)l +

[4 Re Ci11 Im Ci*1 (ti+1 - z1)l'

onship

(32\

(33)

(34)

Im Ci11 - ,,",.ir]/

Because the root of eq (32) may not be exact, Im 71 may not be exactly zero' This slight

error can be transferred'to 
-C11i 

by using the computed real ?i to recompute. Ci11 ' This is

done in the program by transferring to a portion of the program already designed to do this'

When sound speed and gradient at the top of the layer are given, the parameters

required by the progru* are a[!iven. The sound speed at the bottom of the layer is rou-

tinely computed, however, because it may be required to make the next layer continuous'

Equation (5) isused to determine the sound rp."d ut depth 2i11, whichis.thedepth of the

bottom of the layer. This is straightforward, but several compliiations arise' Only the real

part of the gradient at the top of the layer is used as an input because situations have not

arisen that require that the imaginary part of the gradient be specified' often the attenua-

tion is given at both top and boltom of the layer. That is' Re Ci, Im Ci a-nd Re 1l are given'

plus a relationship between Re Ci11 and Im ci11' The imaginary part of the gradient' Im 7i'
must be determined as well as both real and imaginary parts of the sound speed at the layer

bottom. The derivation of this case is not trivial'

one relationship between the real and imaginary parts of the sound speed is given by

eq (28) and (29). From these equations at Ci11 we derive

A(T-i)=2lCia1,
where

T = Re Ci11/Im Ci11'

Substituting this expression for ci11 into eq (31) and equating real parts gives a quadratic

expression for T which has a usable root of
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? ? [ t2 a]V'necciir = -Im(ci) -l tmfcill" + Re(crJ)B I , (3s)'trlJ
where

?
n = ne(Crr) - 8 Re \(zi*, -z)lA2 + 4 Re ClA2.

From eq (34),

Re C111 = 2TlA(T2 + I)
and (36)

Im Ci11 = RCi11/T.

The gradient can now be evaluated by eq (31) to find its imaginary part.

Equations (34) and (35) cannot be used if the attenuation at the bottom of the layer
is given as zero. Therefore an alternate form must be used. This form is much simpler than
the previous case, since Ci11 is real.

ci+r = 
{*","f 

, I ,*" 
ci- 2Re 7i (zi*1 - 4rl

Im ri = [Im cl- rmccfl/cl*; ner*, - ri)J-l

(37)

(38)

Finally, if the special case, 'yireal, is specified by inputting a negative value for
absorption, eq (31) can be used directly to give

a2
Ci+t= Cillci -2ti@i+t-z)). (3e)

To evaluate the square root, let

C?.. =a + bi.r+l
Then

(40)

and

Im Ci.,.1 = b/2 Re C1..1. (41)

NUMERICAL BREAKDOWN

A situation arises frequently in which a very small depth function must be computed
from the difference of two large numbers. A wrong answer results if this accuracy loss
exceeds the word size of the computer. The best way that has been found to avoid this is to
check for it within the program and arbitrarily replace the wrong number. In checking for
this, a constant, called T-lim in the computer program, is compared to the argument of the

Re ci11 = 
{[" 

+ 1a2 +ur,'11 ,1"
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modified Hankel functions or to the argument of the exponential function within modified
Hankel functions. A T{im value of 25.0 is used in the program, but a smaller number occa-

sionally is required. The program user can alter T-lim by appropriate input cards (Key 8 = I
followed by a new value of T-lim). The next few paragraphs demonstrate the symptoms of
this problem, so as to assist a user in recognizing the problem. The remainder of this section
desciibes the modifications that have been made to the computer program to correct this
loss of accuracy.

The solid line of figure 1 shows a simple surface duct and the phase velocities of the
first three modes at 3 kHz. For this profile, the depth function of mode I is shown in fig-
ure 2. The solid line is the depth function as computed by a program that does not correct
for numerical breakdown. The dashed line shows the correct depth function below a depth
of 7l m. This result was determined from Airy functions, not from the program' Between
depths of 71 to 100 m, the program cannot compute the depth function accurately' In the
second layer, whichstarts at a depth of 100 m, the function can be computed accurately but
it is incorrectly placed by the boundary condition that requires the depth functions to be

continuous at interfaces. The slope of the depth function was correctly computed as indi-
cated by the identical shape of the three depth functions in the second layer. The shape is

such as to make the correct depth function continuous in slope across the interface.

The breakdown in accuracy at a depth of 71 m occurred when f had a value of -8'4.
(f is given by eq (7) and is the argument of the modified Hankel functions.) A negative value

o1f o".utr when the mode phase velocity is less than the speed of sound. Since the ray of
the same phase velocity cannot reach such a region, the sound field there is a diffracted field.
The mode depth function is therefore small at such depths. In the figure, the depth func-
tion amplitude at the breakdown point is about 7 orders of magnitude (or in terms of propa-
gation loss, 140 dB) down from its maximum. Equations (62),(66), and (68), which will be

eiven for the modified Hankel functions, indicate that the argument of the exponential term
it iilfl.+f 12 , or 16.2. The functions h 1 and h2 wilt thus be about 107 in magnitude at a
depth of 7 1 m. These large values and their small difference account for the approximate
ur-uru"y loss of l4 decimal places, which is the general accuracy of the modified Hankel
functions.

Incorrect behavior in the depth function usually occurs when f is about -8.4. In
some more complicated profiles, however, where accuracy is lost in row reduction of the
determinant, the depth functions may become incorrect at values of I that are less in abso-

lute value. When this problem occurs it can be diagnosed by plotting the depth function of
the mode and noting the steep positive slope through some depth interval as in figure 2.

When that occurs, the value of Tlim should be decreased.

Incorrect depth functions can cause errors in propagation loss computations in two
ways. In figure 2, the solid-line depth function, because of its large size, can cause losses to
be too low at a depth of around 100 m. The second error would occur if the duct were
deeper, say I l0 m. At this_ depth the erroneous segment of depth function in figure 2 would
reach a value of about I 0- I , where it would be larger than the correct lobe of the depth
function near the surface. With this extra area under the curve, the normalizingfactot would
be increased significantly and would reduce the size of this entire depth function' Thus,
losses near the surface would be larger because of the loss in size of mode 1.
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Thestandardcorrectiontomodelisshowninfigure2bythedot-dashedline.Inthe
depth interval where r < -8.4,the function is set to zero' The values of the depth function

at greater depths ,"..rit from a modification in the values used in the determinant'

The corrected values in figure 2 are notequal to the true value of the depth function'

but they are small enough that they do not alter the propagation loss to a tenth of a decibel

when a full set of modes is used. When the source oireceiver is at a depth where such cor-

rections are necessary, the mode can be omitted from the computation' Thus' properly

omitting modes *orrid solve the above problems except for the cases where the normalizing

factor, D, is affected. In these cases, losses cannot be computed accurately without the

corrections.

PROGRAM MODIFICATIONS

The modification is approximately equivalent to modifying the sound speed profile

as shown by the broken line in figure t. in eifect, the sound speed is not allowed to become

enough greater than the phase velocity of the mode being considered to cause problems'

Thelimitationonfisaccomplishedatthreedifferentplacesinthenormalmodepro-
gram. It is not clear that this is the best way to handle the problem and it may be redundant'

but it appears to be an adequate solution. These three corrections will be described next'

Finally a correction to the determinant program is described which is necessary because the

limiting of f can cause false zeroes in the determinant'

InthesubroutineSETUPtheelementsofthedeterminantarecomputedbydeter.
mining ( at the top and bottom of each layer and then calling the modified Hankel function

program. At the top of each layer, Re f is set to -7.5 if its value was less' However' this is

done in an iterative loop in which the real part of c,-r/C1in eq (7) takes on a sufficiently larger

value while its imaginary part is fixed. riris is done to retain the absorptive properties of a

layer when its sound ,p..0 i. in effect 
-b_eine 

reduced' It has been found unnecessary to make

the above constant, -i.s, ufunction of T-lim which the user can vary' because an oversized

value at the top of a layer is not as critical as at the bottom' At the bottom of a layer' several

tests are made. If the real part of f has decreased past the limit at some depth between the

top and bottom of the layer, it is set at the limit. This limit, called S-lim in the program' is

related to T-lim by the relationship

S = -0)2/3
where S and T are the two limits. If Re f is less than -7'5 throughout the layer' it is simply

set at -7.5. Such a layer has negligible effect on a mode'

In program MAIN at the location where depth functions are computed for given

depths, a process similar to that above is used. To evaluate the depth function in a given

layer, f is first evaluated at the top of the layer. The real part of f is the4 limited as in the

program SETUP above. Next f is evaluated at the given depth by adding the depth-dependent

part onto the value at the top of the layer which may be the modified value' If this final

value is less than S-lim, the depth function is set to zero. If it is greater than S-lim' the func-

tion is comPuted in the usual waY'

(42)
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The imaginary pafi of f can be large if the eigenvalue has a large imaginary part or if
the speed of sound in the layer has alarge imaginary part. When this happens the imaginary
part of 2lZ gs1z, which appears as an exponential in the modified Hankel functions, may
become large in absolute value even though Re f has been limited. A final check is therefore
made before the exponential is computed. If Im g312 is greater than T{im, f is reduced in
amplitude to the size at whichit will equal T-lim. The angle of f in the complex plane is
preserved.

This limitation of the exponential can be viewed in another way. In a following sec-
tion the two components of the modified Hankel functions, F1 and F2, 

"q 
(68) and (69),

have exponential terms whose arguments are equal and opposite in sign. When these argu-
ments have magnitude of 213 T-lim, they differ in size by l5 decimal places, which is near
the 18-decimal-place word size of the machine. The ability to compute the difference in
these two terms is essentially the same as the ability to compute the depth function accurately.

PREVENTING ZEROES IN THE DETERMINANT

Placing limits on f can cause problems in the determinant because I may be set equal
to S-lim at several interfaces. The equations that arise for matching boundary conditions
may then be identical for these interfaces and may therefore fail to be linearly independent.
The triangularized determinant will thus have zeroes on the diagonal at positions equivalent
to interfaces that do not have real physical importance for the mode. These will prevent
location of the significant "zeroes" or roots. These artificial zeroes must be removed.

The artificial zeroes are detected and removed in the subroutine DET, which evaluates
the determinant. If four elements from the matrix have the configuration

and c is to be set to zero by row reduction, d will be replaced by a value, x, as follows:
x=d-bc/a.

If d is located on the diagonal, complete loss of accuracy is checked for by computing

, = l*21/ Ezl.
If s is less than I O-34,xis not used;instead, d is replaced by lO-17d. Not. that this substi-
tution will occur when x is zero, thus preventing zeroes on the diagonal. The power of ten,
-17, is chosen to be near the total word size of l8 decimal places.

The above substitution prevents sudden jumps in the value of the determinant when
all precision is lost at one step in the evaluation. This is important for the mode search rou-
tine which detects roots by looking for minima in a series of values of the determinant while
one parameter is incremented slowly. A sudden jump will often produce a relative minimum
which will be falsely interpreted as a root. At true roots, one or more elements along the
diagonal are small, but not as small as those checked for here.
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REFLECTIONCoTFICIENTSANDOTHERAUXILIARYOUTPUTS

Once the depth functions of a mode have been determined, it is relatively easy to

compute reflection coefficients at any interface. Therefore, a subroutine called RCOEF has

been added to the program which will compute and print out reflection coefficients if
requested by the u." o"f control key 3. If key 3 is set to 1, the reflection coefficients at all

interfaces are computed. If set to a number, n, greater than 1, the coefficient is computed

atthenthtnterfaceonly,wherethesurfaceisthefirstinterface.

Theprintoutincludesthephaseaswellastheamplitudeofthereflectioncoefficient
andthegrazingangle.Thegrazingangle,0,oftheequivalentraysiscomputedfromthe
mode phase velocity and the sound speed, c, at the bottom of the layer, by Snell's law:

6 = .or-l 1"7uy.

The grazing angle is computed only if the phase velocity is greater than the sound speed at

the interface, since otneriise the equivalent ray does not reach the interface'

The reflection coefficient is derived, following Bucker (ref 9), by assuming that an

isospeed layer exists for a small depth just above the interface' In this layer the depth func-

tion can be written as

f(z) = S"il71 
'"-ilz'

where l, the vertical component of the mode wave number, is given for mode n by

(44)

and

ki= a:f c6i,

where c6i is the sound speed at the bottom of layer i. The derivation now consists of identi-

fying A and B as the p,.,,.,,., of the upgoing and downgoing waves at the bottom of the

layer; thus the reflection coefficient

R = A/8.

A and B are evaluated by making f and its derivative at the interface between this small iso-

speed layer and the regular profile continuous with the normal mode depth functions' The

thickness of the irorpJ"O layer is then allowed to approach zero, giving the desired value of
R. If F and F, are the normal mode function and its depth derivative at the interface depth

definedbyeq(9)and(19),thereflectioncoefficientresultingfromtheabovederivationis
as follows:

? =x? -x2nln

(43)

(4s)

This coefficient is a complex number. Loss per reflection is given by 20 times the

log of the absolute value. The phase gives the phase shift that an equivalent ray would

p=(ilF+F')/(ilF-F').

9. Sound Propagation in a Channel with l,ossy Boundaries, by HP Bucker; J Acoust Soc Am, vol 48,

p I I 87-1 194, November 1970'
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experience upon reflection. Figure 3 is an example of the use of this computation. It shows
phase and amplitude of the reflection coefficient in shallow water over a sandy-silt sediment
lying over rock. The frequency is 1500 Hz. Reflections are given only at discrete points
determined by the individual modes.

The model in figure 3 is for a liquid bottom. That is, no rigidity is supplied in this
program and the sound speed, density, and attenuation determine the reflection coefficients.

The reflection coefficients computed by eq (45) can be closely approximated by
dividing the mode attenuation by the loop length of the corresponding ray. The loop length
must be determined from ray theory for the ray of the same phase velocity or vertexing veloc-
ity. However, an interesting analog of the ray loop length is the intermode interference length.
This is discussed by Guthrie (ref 1 0). Specifically, if the difference between eigenvalues, Re tri,
for two adjacent modes is A)., the interference length | = 2r lA)r. This distance will usually
equal the ray loop length for some ray with phase velocity between that of the two modes.

As each mode after the first is computed, the length, l, is computed and printed out.
Also routinely printed out for each mode is the mode damping or mode attenuatron coeffi-
cient, in units of dB per km. This attenuation, a1, is computed from the relationship

% = -1000 Im tri loglg e

= - 8686 Im ).i.
This quantity multiplied by range gives the damping of mode i, in dB.

10. The Connection Between Normal Modes and Rays in Underwater Acoustics, by KM Guthrie;J of Sound
and Vibration , vol 32, no 2, p 289-293 , 197 4.
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CoMPUTATIONoFTHEMoDIFIEDHANKELFUNCTIONS

Most of the computer time required to determine eigenvalues and compute depth

functions is spent in evaluating the modified Hankel functions of order 1/3 ' For this reason'

minimizing computer time in evaluating these functions is desirable' Gaining as many places

of accuracy as possible is even more important. The average normal mode computation will

have many modes that can be determined to far greater accuracy than is required to obtain

0.1 dB accuracy in the propagation loss. However, there are usually some and often many

modes in which many places of accuracy are lost in evaluating the determinant' Therefore'

maximum accuracy irrifr" modified Hankel functions is required to extend the range of

cases for which computations can be canied out successfully'

optimization of the ploglam is a function of the computer word length' The pro-

gram given in this r"po* i, ro, tile UN.IVAC I110 with 60 bits word length in double preci-

sion or 1g.1 decimaiplaces. This section gives the equations and computational techniques

that are required to optimize this program for different computer word lengths' complete

details of the functions are given in reference I 1'

The Airy functions Ai(z) andBi(z) can be used instead of the modified Hankel

functions h1 and h2. However, since h2 is ideally suited to matching the boundary condi-

tions at great depth as formulated in this normal mode plogram' h1 and h2 are used here'

The relationship between them is as follows:

h1(z) = k [Ai(-z)-iBi(-z)]
h2@) = k* [Ai (-z) + i Bi (-z)] ,

where

(46)

(47)

k = (3P)213 0 - itfrlsl,and k* is the complex conjugate of k'

In this section z will be the argument of the functions.h 1.and h2' For small values

of lzl , h 1 and h2 are computed by power series expansions. Foi large v-alues, an asymptotic

expansion is used. In the past the asymptotic series was expanded directly' However' a

continued fraction .*pu.,rio1 has been iound to give both shorter running time and better

accuracy.

Figure 4 shows a line in the complex plane which divides the plane into two parts'

For values of z within the line, the power series method is used' when z is outside the line'

the continued fraction method is used. This line is a function of computer word length' and

the method of determining it will be given after the two methods have been treated' The

accuracy of the methods is also treated'

The program has a parameter called IH in the FORTRAN call statement which con-

trols which functions are computed. If IH is set to zero,both functions and their derivatives

are computed. If IH is set to 1, only the functions are computed' If it is set to 2' only h2

and its derivative are comPuted'

ffiedHankelFunctionsoforderone-ThirdandtheirDerivatives,HarvardUniversity
Computation Laboratory; Harvard University Press' Cambridge MA' 1945 '
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Figure 4. Line in complex plane dividing the arguments for which the
modified Hankel functions are computed by (l) power series (inside)
and (2) asymptotic expansion evaluated by continued fractions
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POWER SERIES EXPANSION

In this expansion h1 and h2 are given by two auxiliary functions f and g as

ht (z) = s + i(r-tlz G-zD (48)

h2@) = g-i GftlzG-2D . @e)

The auxiliary functions are given by the expressions

M
f =A t qox. (so)L

m=0

M
s=Br: b-X-, (51)

m=0

where X= z3,;=21131ue13)i and B =21131.:213 r @B)1. The derivativesht (z) and
h2 @) can be derived by straightforward differentiation of eq (50) and (5 I ) to give

23



o-b d- X'

The coefficients of eq (50) - (53) are given by recursion relations where a0 = I ' a1= lf 3t''

22=tl' 416!, a3= -l' 4' 7 19!

om = -3m-1/(3m) (3m-1)

bO = 1, b1 = -214r',b2= +2' 5l7l,b3= -2 ' 5 ' 8/10!

bm = -b.-1l(3m) (3m+1)

cg=313!, cl = -6'|'416!
cm = -cm -113m 

(3m+2)

d0 = l, dl = -4' 214!

M
f' = -Az2 >

m=0

d- = -d--1/3m (3m-2)

lr3lt d- = 1r31k dk. loh

loe lzl = (1og dp - log d. + h)/(3m - 3k)

M
B>

m=0

(s2)

(s3)

(s4)

(s s)

(s6)

(s 7)

(s8)

It is important for efficient computation that the number of terms M be no larger

than necessary. In the current program the same value of M is used in all four sums' This is

done because the optimum number never differs by more than one in the four cases and the

determination by tabll look-up of four M's often would take longer than computing any

unnecessary terms. M for each series is determined so that adding additional terms will not

change the answer. Then the most stringent of the four conditions is tabulated and used'

A precise determination of the number of terms to use requires a knowledge of the

size of the largest single term in the sum. when a term is smaller than this by a factor which

is the power of 10 equal to the number of decimal places in the computer word size' it
cannot affect the sum. we ignore the fact that a sum of small terms might be significant'

This, then, defines the truncation point. Let m be the number of the largest term in the

sum, k the number of terms to be used, and h the number of decimal digits in the machine

word. Then for a given k, the largest absolute value of the argume nt z that can be used to

compute g' is given as

The power of ten can be replaced by 2 raised to a power of the number of binary bits in the

computer word if preferred. The coefficient d of eq (57) is used' Each of the other three

should also be tried, to find the smallest number of the group for a given k' Equation (58)

can be solved for lzl, giving
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A simple computer program given in appendix C will find lzl for each value of k from I up
to the maximum number of terms desired. The largest term, m, is easily determined because
from one k to the next m will remain the same or increase by l, so it is only necessary at
each step to check term m * I to see if it is larger than term m.

The FORTRAN subroutine HANKEL given in appendix A uses the above power
series method to compute h 1 and h2 for small arguments. The coefficients a, b, c, and d are
given in lists by that name. The truncation points are given in the list called ZMLA2, which
lists values of pp determined by eq (59) or the three similar equations.

ASYMPTOTIC SERIES EXPANSION USING CONTINUED FRACTIONS

When the argument z falls outside the curve in figure 4, h1 and h2 can be computed
more efficiently or more accurately by asymptotic series than by power Jeries methods.
Reference 1 I gives information on branch cuts and regions of validity of the two forms of
the asymptotic solution (Stokes'phenomenon). Here we will give computing formulas that
comply with these requirements, without discussing them further.

Since a given expansion is valid in one or more quadrants, we choose complete quad-
rants as regions. For z in quadrants l, 3, or 4 use

h2@) - exp (sn il12)F2(z)

h2@) - exp (-n ilt2) G2@)

For z in quadrant 2 use

h2Q) - exp (5n il12)F2@) + exp (ttr ilt2)F1@)

h2 @)- exp (-r illZ) GZ(z) + exp (-7n il 12) G1 @)

For z in quadrants 1,2, or 4 use

h1 (z) - exp (-5r ilt2) F 1 @)

h'1@) - exp (n il12) G1 (z)

For z in quadrant 3 use

h1 (z) - exp (-5n il12) F 1 @) + exp (- llr ilt2) F2 @)

h'1Q) - exp (tr ilt2) G1 (z) + exp (7r ilt2) GZ@)

The four auxiliary functions follow:

M
\L

m=0

(60)

(6 t;

(621

(63)

(64)

(6s)

(6sS

(67)

F1 (z) = 14 ,-l 14 exp (2i ,Z 121S)
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M

F2@) = Y'-114 exP (-2iz3l2B) >
m=0

M

G1 (z) = Yrll4 exp(2tz3l2B) >
m=0

M

G2@) = Yrll4 exp (-2iz3l2B) >
m=0

where X and Y equal + iz-312 respectively, and

K = 2l13 3I16 rllZ = 0.853 667 218838 951

The coefficients c- and D. are again computed by recursion relations where cg = D6 = 1:

{o2)

(6e)

(70)

(7 l)

c- = c--1 [9 (2m-l)2 -4]l4Sm

and

Dm = Dm-l t9(2m-1f -rc)148m. 03)

Square roots of z are to be taken so that the real part of the root is always positive and the

imaginary part has the same sign as the imaginarypart of z'- This applies also to fourth

roots. The three-halves poweiis obtained as the product of z and its square root'

The summations in eq (68) - Q tl can be done as indicated or evaluated by contin-

ued fractions. When done aslndicated they are asymptotic series, and care must be taken to

truncate them at the term of smallest magnitude, if this term is reached, because adding

more terms will reduce the accuracy. Sin-ce the largest term in these series will always be l '
the series can be truncated if the terms become lesi than l0-h in magnitude, where h is the

number of decimal digits in the computer word'

Continued Fraction ExPansion

The method of continued fractions is more effective in evaluating these asymptotic

series, and it is used in subroutine Hankel in the FORTRAN program in this report' The

coefficients are stored in lists entitled c4, c5,D4, and D5' In the remainder of this section

the continued fraction technique is presented, along with the method of determining

coefficients.

The continued fraction has the form

F(x) = bg+a1wx+b2+...
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It is to be used to evaluate a polynomial

P (x) c- X- (7s)

Thispolynomialcanrepresentanyofeq(68)-(71). Oneofthreestandardformsforcon-
tinued fractions, this form is used because it has two coefficients at each stage and therefore
is equivalent to an asymptotic series of twice as many terms. This reduces Uy naf the num-
ber of divisions required. Since complex divisions are lengthy, requiring six real multiplica-
tions and two divisions, this is the only standard form of the continued fraction that can
compete in computer time with the asymptotic series.

The coefficients ai and bi of eq (7 4) must be determined from the coefficients C-.
The usual technique is to express P as a rational function, then use the continued fraction to
evaluate the rational function. The determination of the coefficients can be done in thesetwo steps or by a second method which goes directly from power series to continued frac-tion coefficients. The second method is preferable because the loss of accuracy is more inthe first. But since the first method is more easily understood, each method will be given; acomputer program is included in appendix C which will determine coefficients by the sec-
ond method.

Let M in eq (75) be an even number so that 2N = M. (An additional unnecessaryterm of the series ca4 always be used.) The rational function will have the form

R(x) = (7 6)

M

m=0

- 
X u,./X 4"',

where.eo=fo= I aldk=C0. Thecoefficientsllano iiare evaluated from aset of linear
equations which can be described by displaying fparticular case. For N = 3 they are asfollows:

0-t
coo
cl co

0 -l c2 cl c0

k

k

k
(o7)c3 c2 cl

C4 Ca C2

c5 c4 c3 c6

Y1,l "i and fi thus determined, R(x) is equivalent to P(x) through the first M * I terms.R(x) can now be evaluated exactly (except for round-off error) using a continued fractionof the form F(x) of eq (74).
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RatherthanR(x),however,asimilarexpressioniny=1/xistheformthatiswell
suited to evaluating asymptotic series. ttti, ""pi"'sion 

is obtained by dividing each term of

iiiiio, i{Tt " 

-ora., 
or tn" coefficients "ur, 

no* be reversed and a simple algebraic oper-

ation can yield a value of 1 for each of the two initial coefficients and a new value for k' we

will call this new rational function with renamed coefficients {(v). It will have the form of

eq (76) but different coefficients, say e and f instead of 6 and f'

Thecoefficientsaiandbiaredeterminedfromeiandfibyarecursiveformulawhich
involves constructing u" n' X n triangular matrix Q with elements qi,j as follows:

bo="0

el,i=(ei-egff/a1 i=1'2'"''N'
where Ql,l = I, giving a1' and

bl = fl -Ql,Z .

The second row:

e2,i = (fi-ql,i+l - b1t1)la2 i = 2'3' "''N '

where Q2,2= l, giving a2, and

b2 = Ql,2- q2,3

Elements outside the matrix are assigned a value of zero' The remaining rows for m = 3 to

N are as follows:

Qm,i = (q*-2,i- Qm-l,i+l - bm-l Qm-l,i)/um

where em,m = l, giving a*, and

bm = Qm-l,m-Qp,6*1

Thesecondmethoddeterminesthecontinuedfractioncoefficientsaiandbidirectly
fromtheasymptoticseriescoefficientsci.Thismethodispreferabletothefirstbecausethe
loss of accuracy in inverting the matrix in eq (77) can be more than the loss in this second

method.

It has been pointed out* that the second method is probably a variant of the

viskovakoff algorithm described by Khovanskii (ref 12) and as such is unstable - subject to

accumulation of errors. However, it is sufficientiy stable to obtain the required coefficients'

*Private communication with AN Stokes, CSIRO' Wembley' Western Australia'

12. The Application of continued Fractions and their Generalizations to Problems of Approximate Analy-

sis, UV-AN Khovanskii; a monograph in Russian' 1956'

i = m,m*l,...,N,
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The coefficients are derived as follows. The well-knowh recursive relations that give
the Nrft stage of a continued fraction as a rational function are used (ref l3).

FN(y) = Ap(v)/By(v) ,

where

AN=

+ uN AN-2 (7e)

13. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, ed by M
Abramowitz and IA Stegun; National Bureau of Standards Applied Mathematics Series, vol 55, p 19,
1964.

(78)

N

i=0

(y + bp) Ay_1

N
Bru = f fiyi1\ /-

i=0

= (y * bN) BN_l + uN BN_2 , (g0)

in which A-l = I, A0 = b0, B-l = 0, and B0 = l. Again y = l/x. The long division indicated
in eq (78) is then carried out, giving a quotient in terms of ai, bi, and y that can be equated,
term by term, to the first 2N- I terms of the asymptotic seriis.

The long division is carried out with A1q and Bp written in descending powers of y.
The quotient is then in descending powers of y or ur".nding powers of x. Fortunately, the
first 2N+ I terms determined for any N are identical to the same initial terms for any larger
value of N. This will be proven later. The first few equations obtained from the division are
as follows:

bo=co
al=cl
-a1b 1 = C2

"' (o? -ur) = ",
^, (, uzbt -al* ^ra.r) = c4 (8r;

From these equations ai and bi can be determined, since the coefficients C1 are
known. However, a simpler method iJ available.

The long division indicated in eq (78) can be carried to 2N+ I valid places; but be-yond N+l places, terms from the original dividend are no longer entering the remainder.
Therefore terms in the later part of the quotient have a simplified form. Since term n+ I of
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the quotient is equal to the n/ft asymptotic coefficient,designate itcln' Note that the C's

are numbered from 0 to N. Let the coefficient of ym in Bn be B","'' Then

\-N+j - BN,N_i Cy+j-i , I <j <N (82)

Here the c's are numerical constants. The unknowns, the a's and b's, are in the terms of B'

Suppose that these unknowns have been determined up to n = N- 1' Then eq (82) will
contain two unknowns, aN and by. By using eq (82) for j = N- I and N' the unknowns can

be evaluated. The index N can then be increased by I and the process repeated' The

process can start with N = 2 if al, bg, and b 1 a1e- provided, but these are easily determined

from eq (81). The terms of B5 are determined from eq (80), which gives for each term

Bn,- = Bn-1,m-l + bn Bn-1,m f 3n Bn'Z'm

Any Bn,* is zero if m is greater than n'

when j = N-l is used in eq (82) in the process described above' the coefficient of
the(2N-1)powerof xisbeingevaluated. ThistermisexpectedtocontainallandbNJ'but
- as will be proven later - because the coefficient of b11 is zero, a5 is the 9n-lv. 

un]<nown in

a linear equation and can be easily evaluated. The nexf term determined with j = N contains

ay and U11, tut now only b11 is unknown and is easily evaluated'

As an example, thecrr's through n = l0 are listed in table l. These are the asymp-

totic series coefficients giu.ritv eq(72). The corresponding an's and bn's as-determined

above are also listed. A-more .o.pt.t. list of the a's and b's can be obtained from the

FORTRAN program in aPPendix C'

Tablel.Asymptoticseriescoefficients,Cn,andthecorresponding
continued fraction coefficients, an and bn'

N

i=1

(8:1

0

I

2

J

4

5

6

7

8

9

10

1.

0.10416

0.083s5

0.12823

0.29185

0.88163

3.32141

14.99s76

78.9230r

474.451s4

3207.49009

0

0.10416

-0.s8764

-2.29072

-5.1 1525

-9.06285

1.

-0.80208

-2.28s55

-3.77864

-5.27462

-6.77 r93
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A FORTRAN program to compute the continued fraction coefficients for the series
given by eq (72) is given in appendix C. This program can be easily modified to determine
the other set.

Two Proofs

In this section proofs witl be given of two facts used in the previous section. Follow-
ing this, the number of terms required, the accuracy, and similar topics will be discussed.
To prove that the first 2N+ I terms of the quotient AN/Blq are equal to the same terms
when N is a larger integer, use long division on eq (79) *a (SO) to obtain

Ary/Bp = Ay-1/By-l * an (AN-2 BN-t - AN-r BN_Z)/(BNr BN_r) (84)

If the first quotient on the right is to have terms equal to the quotient on the left up
through term 2N- l, the remainder must have no terms with y to a higher power than
-(2N- I ). The final divisor, BN BN-1, contains y to the (2N- I ) ana twei powers. There-
fore, the proof is complete if the numerator of the remainder is a constant. To show this,
use eq (79) and (80) to evaluate By-1 and AN-t ; it can be shown that

AN_Z BN_t - AN_t BU_Z = -aN_l (AN_3 BN_Z - AN_Z BN_S)

= (-l)N aN-1 aN-2 . . . al

The right-hand product is obtained by repeatedly applying the middle result. The product
of a's is a constant, completing the proof.

_rN. The second proof required is that in the quotient of Ay/Bp, C211 (the coefficient ofy-zr\) will contain no ai or bi to higher than term N and CZNii (ttre c6eificient of y-2N-l;
will involve no ai to higher than term N+ 1 and no bi to higher than term N.

The first part is intuitively obvious. Since from the preceding proof C2p will be the
same when derived from the ratio A;/By for any x as long as it is N or greaterlwe neea
consider only the case where x is N. But since from eq (79) and, (80) A1,,1and Bp contain no
a's or b's of greater than term N, c2N cannot contain a's or b's of highei terrns.

By the same argument C2pa1 can contain no a's or b's to higher terms than N* l.
There remains to be proven only that byal cannot exist in C2N+t or that its coefficient,
which we will call E, is zero. Applying eq (SZ) for N+ I and jA w giu",

cN*l *N = - BN*r,N*l-i cN+l +N-i

E, the coefficient of bnal in this expression from eq (g3), takes the form

N+1

i=l

N+

:
i=1

E--
I

BN,N+l-i c2N+t-i
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Butbychoosingj=Nineq(82)weseethattermsltoNforC2yequalterms2toN+lin
E, so

B = -BN,NC2N+CZN '

However, since By,y, the coefficient of yn in Bn, is always I by eq (80), E = 0' Therefore

by11 does not exist in C25+1.

Number of Terms

The number of terms or stages to use in the continued fraction was arrived at by a

trial and error process. For a given number of terms, a real positive argument was decreased

until the accuracy began to drop. The magnitude just before this drop was considered to be

the optimum point tJ increase ih. nrrmb"i of stages by one' Because the argument to the

continued fractions 
"; t|',-;" took the larger oittt" magnitudes of the real and imaginary

;;ffi;7il;;; test number. This nurnb., is then compared to the 312 powet of the

points determined along the real axis by trial and error'

The above method appears to work well although it involves no thorough under-

standing of the way compl." nrrtb*r, affect the successive convergents of a continued

fraction. Table 2 shows the points down to which a given number of stages gives full accu-

racy for positive real arguments and lists the 312 power of these numbers as used in the

FORTRAN program list called ZMLAl '

Division Lines

The power series method is now to be used for small arguments and the continued

fraction method fo, large arguments. The exact dividing line between them is needed' The

division line of figure 4ias anived at by computing the functions along rays from the ori
gin, using both power series and continued fractions' The number of decimal places to

which the functions determined by the two methods agree tends to reach a maximum at

some distance from the origin along each ray. At distances short of this maximum we can

assume that the continuedlractionmethodls less accurate than the power series' At dis-

tances beyond the maximum, the power series is assumed to be less accurate' The maxi-

mum therefore indicates the ideal place to change from one method to the other if the

decision is to be based solely on accuracy. This method was used to determine figure 4'

A complication arises, however. Along certain mys from the origin' h1 and its deriva-

tive reach a maximum number of places at very different distance-s from h2 and its deriva-

tive. The prin"ipuriroiilil ", 
fjg' but persists from about 30" to 90'. At 60", h1 is

small in magnitude Zia n2is large. The power series method cannot compute the small

values accurately due to loss in accuracy in subtraction in eq (48). The accuracy of the

continued fraction?"r rri *p"or at 605 because eq (69) becomes a nonalternating series and

continued fraction approximations are not known to improve the accuracy of nonalternat-

ing asymptotic series as they do for alternating series'

A reasonable solution to this problem is to compute h1 by continued fractions and

hzby power series for arguments at these angles and magnitudes from 4 to l0' However' as

will be shown later, the ulou. solution has not been employed at this time since this area is

not of great importance for normal mode computations' Instead, the argument was chosen
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Table 2. Cut-off points for determining the number of stages in the continued fractions.

Number of Stages

I

2

J

4

5

6

7

8

9

l0
ll
l2

13

14

15

t6

t7

l8

Real Argument
x

106

80

35

)")

l3

l1

9

8

7

6.5

6

s.8

5.5

5.3

5.1

4.9

4.5

4.4

Program Test Value
al4

xJl z

109

715.0

207.0

103.0

47.0

36.4

27.0

22.6

18.5

16.6

14.7

14.0

12.9

12.2

l 1.5

10.8

9.5

9.2

that gave equivalent accuracy for the two methods. Along 60o this minimum accuracy is 9decimal places.

The following relationship exists between h1 and h2 for positive and negative valuesof the imaginary part of the arguments:

tr1 {z*) = lhz@)l* ,

where the * means complex conjugate. Thus, the above discussion at 60o can be translatedto -60o. Also, the functions actuaily need to be computed only in quadrants I and II. Theycould then be evaluated in quadrants III and IV by the above relationship. The above rela-tionship explains the symmetry of figure 4 about the real axis.
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COMPARATIVE ACCURACY

The accuracy of the three methods - power series, asymptotic series and continued

fractions - has been determined on a CDC colputer with 48 bits or l4'4 decimal places of

accuracy in the floating point word. Since this differs from the double precision word

length of 60 bits or t 811 decimal places that applies to the preceding part of this report'

these results are for comparative and illustrative purposes only'

Accuracy is determined by computing the functions and either comparing the an-

swers for the several different computing *"ihodr or computing the wronskian' The

wronskian is a constant given by the relationship

hthz-hzh'l = -l'45749544104i = -i96l13 1n
(8s)

The wronskian will determine the accuracy of the functions if it can be computed without

loss of accuracy. If the two products in ii are large, though, accuracy will be lost in the

subtraction. This generally hupp.n, for arguments near the negative real axis' Here accura-

cy must be determined by comparing answers from different methods' The accuracy of the

functions and their derivatives will generally be about equal.

Figure 5 illustrates the accuracy that is obtained in different parts of the complex

plane of the argume nt, z,by using the power series method. on the inner contour' the

functions h1 and h2andtheir derivatives have l2 places of accuracy' on the outer contour'

the accuracy is 1l places. As expected, the accuracy is best for arguments of small magni-

tude. The accuracy remains best in directions from the origin in which the functions afe

large in magnitude. This is because less accuracy is lost in subtraction' Accuracy must be

loi when individuat terms of the series are large but the sum is small.

Figure 6 shows accuracy contours for the asymptotic expansion with both the direct

and continued fraction evaluation of the series. Here, the best accuracy is obtained for large

arguments, and accuracy decreases toward the origin. As can be seen, each of the two meth-

ods is better in some diiections from the origin. The choice of methods then depends upon

which directions are of most value to the normal mode program' The dots on the figure

show the locations at which the functions were evaluated in a typical surface duct run'

Although arguments can lie anywhere in the plane' most of them follow this pattern' They

lie just above the negaiive real axis and in u nurro* angle above the positive real axis' The

continued fraction riethod is distinctly better on this positive side' Since computing time

also favors the continued fraction method, it is clearly the method to use'

If the l2-place accuracy contour fiom figure 6 lies inside that for figure 5 at some

angle from the origin, 12 places can be obtained at any range along this angle by using either

power series or asymptotic expansion in the interval of overlap' If the asymptotic expan-

sion contour lies outside the other, there is an interval in which 12 places cannot be ob-

tained.onlysomelessernumberofplacescanbeobtainedinthisinterval.Thesecontours
apply when both functions and their derivatives are all computed by a single method' As

mentioned earlier, increased accuracy could be obtained in some areas by computing the

two functions by different methods'
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11 PLACEACCURACY

I2 PLACE ACCURACY

Figure 5. Locus of arguments for which the power series evaluation of the
modified Hankel functions gives 12 and I I decimar places of accuracy for
a computer word length of 14.4 decimal places.

Figure 6. Locus of arguments for which the direct and continued fraction
evaluation of the asymptotic series gives 11 urd. 12 decimal place accuracy.
The arguments at which the modified Hankel functions were evaluated in a
typical normal-mode run are shown.
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MODE FOLLOWER PROGRAM

AppendixDliststheModeFollowerPrograminFORTRAN.Itisnotapartofthe
general normal mode proglam, but is related in that it uses some parts of the general pro-

gram. The purpose of tn. mode follower is to trace a given eigenvalue as some parameter is

varied. This parameter is usually frequency, but any profile parameter can also be varied'

The eigenvalues at a given set of parameters are discrete points' By permitting the parame-

ter to vary, the eigenvalues become a set of lines, and this often clarifies their behavior at the

fixed points. Figures 7-9 illustrate this'

Figure 7 is a sound speed profile consisting of two ducts' Figures 8 and 9 show the

real and imaginary parts of **. ,ig"nualues of the profile over a range of frequencies' The

imaginary parts are expressed u, *od" attenuationr. ttt" figures show a region where both

ducts are exerting an influence on the eigenvalues. The broken lines show the location of

eigenvalues for a profile that consists of only the upper duct of figure 7' Considerable time

could be spent studying the interaction between the two ducts, but since the purpose here is

to illustrate eigenvalueJ as functions of a parameter, only a brief description will be given'

Modes are numbered by the real parts of their eigenvalues' This numbering is con-

sistent with the number of beats or changes of zr in the phase of the depth functions' Thus

the eigenvalue of a mode numbered 1 in-a profile consisting of only the upper duct lies

exactly over the eigenvalues of a mode in ttre double duct in figures 8 and 9' but this mode

in the double duct changes number each time it crosses the real part of another mode' The

depth function actually-gains an additiorral beat each time this happens' The background of
modes that are U"lrrg .tJ*td consists of the higher order, untrapped modes associated with the

lower duct.

Mode 2, of the upper duct only, does not have a single mode in the double duct that

overlies it exactly. Instead, amode attempts to follow it at frequencies above 1350 Hz'

Below this frequency, successive modes follow its path for short intervals' This interplay

between modes occurs when mode 2 of theupper duct is in some sense equally as untrapped

as the modes associated with the lower duct'

The imaginary parts of the modes follow similar patterns;but because the mode

numbering is not detlrmined by the imaginary parts, the mode numbers sometime jump

from one line to another. An important feature of these two plots is that if the real parts of
the eigenvalues cross, the imaginary parts do not; and vice versa' Thus two eigenvalues do

nottendtobecomeequalatapointwhichwouldmakethemdegenerate.

The mode follower program will tend to follow the continuous curves. Thus if start-

ed in the right direction on -od. 59 at 1450 Hz, it will follow along the continuous mode

which becomes successively mode 58, 57,56, and 55'

Figures such as 8 and 9 can be drawn by computing the eigenvalues at a sufficient

number of frequencies to determine the lines. The mode follower does this for a given

eigenvalue while adjusting the step size so the mode will not be lost, or so the program will
correctly follow the mode. The step size is permitted to become large where the eigenvalue

can be approximated by a parabolic curve, but it shortens when extrapolation to the next

point becomes less accurate'
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When frequency is the variable parameter, the group velocity of the mode can becomputed easily since a numerical derivative can be computed. Group velocity is given by
the relationship

C, = duld (Re k)

= Ar,ulA (Re k)

= -A f v21f av ,

where k is the horizontal wave number of the mode and v is the real phase velocity. The
mode follower prints this value out at each step, along with the eigenvalue.

MPLEMENTATION OF THE MODE FOLLOWER

The mode follower was originally implemented for a two-layer normal mode which
differed from the nJayer program in that the derivative dG/dv of the characteristic equation
was evaluated along with G. The iteration for roots of G was thus Newton-Raphson and isgiven by the relationship

vi+l = vi-G/G' (86)

This is simpler than the secant iteration of eq (15), in which G' must be evaluated numeri-cally' Because of the simpler iteration, an effective scheme for mode following was available.

Y:-58
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Since considerable effort was required to develop a similar scherne for the n-layer case, the

two-layer mode follower will be briefly described to serve as an introduction to the n-layer

case.

The two{ayer mode follower employs one iterative step of eq (86) at each point

where G is evaluated. Thus, a root that is inexact but sufficiently exact is obtained' The

original estimate is obtained by extrapolating from the three most recent roots' If this esti-

mate is sufficiently close to the true root, the single iterative step will make a small correc-

t-i,o.r, G7G" that will bring the estimate very close to the true root. By using the size of this

correction to control the step size, the pr-ogram is self-regulating' The proglam works well

when a permissible value of b/C' of l0:6 to l0-4 is used. Outside this interval the step size

is either doubled or halved.

The multiple-layer program differs from this in several details. The extrapolation
from the previous three points is done not only for the phase velocity but also for the nu-

merical derivative,

D-l = Av/AG.

Lagrange three-point interpolation is used, given by the form

v(xr) (x- xr) (x -xj) v(x2) (x -x1) (111),u(tg) (* -*l) (* -*t
\ f/ \ .Z-- Jv(x) = @ -@' (xl-x3)(x2-x3)'

(87)

where x is the new value of the parameter that is being varied (usually frequency) and x1'
x2, andx3 are the three previous values, x1 being the most recent. To extrapolate the

aJiivativelv is replaced bv o-1 in eq (87). Both quantities are complex numbers'

The determinant is now evaluated at this new phase velocity to give a value Gg'

Next a corrected value of phase velocity, v6, is obtained:

vo = v-G6o-1 (88)

In the two-layer case, the size of the correction, GD-1, is used to control the step size'

Because the numerical derivative is less precise, we evaluate G once more at this new posi-

tion, obtaining G1. A new numerical derivative is next calculated:

D0-1 = (vg - v)/(G1 - GO) .

This derivative is now compared with the extrapolated value to determine whether the step

size should be changed. To do this an error

E = l1 -DyDP
is computed. Good results have been obtained by keeping E between l0-5 and t O-2' tf B
becomes larger than this, the step size is halved and the extrapolation is tried again' Should

halving the step size five times fail to obtain a value of E less than lO'2, the mode is pre-

sumed to be lost and the program halts.
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If E is less than lO-2, the step is successful and the stored values are updated for the
next step. Before v is stored, though, the iterative step of eq (88) is applied one more time
to obtain a more precise value of v. This requires little extra effort because the quantities
G1 and Dg-l ut" already available. - 

:

If the error E is less than l0-5, the next step size is doubred.

It is possible for the extrapolation to be too successful. That is, if v is very near the
true root, Gg and Av will be very small. The numerical derivative may then be inaccurate.
Therefore, before the error term E is computed, a quantity

p = lylAvt2
is computed. If F is greater than 1028,the extrapolated derivative is used rather than the
computed derivative and the program proceeds to the next step. If F is greater than 1034,
the step size is doubled before proceeding to the next step.

The other principal part of the program is the initialization which must evaluate v at
three values of x to obtain the numbers needed for the first extrapolation, eq (g7).

INPUT AND OUTPUT

The first input card contains the maximum number of steps allowed, the limits
applied to E and F, and keys which control both the amount of detail in the printout andwhether the profile parameters are to be read in or retained from the previous run. Default
values are supplied when these items are left blank. Next the profile parameters are read in.
These are an older style and only permit specification of the absorption loss at the top of alayer. The sound speed gradient is assumed to be real at the top of any layer.

A final card indicates which variable - frequency, sound speed, depth, gradient,
absorption' or density - will be varied, by specifying a number 

"uil.d nx in ttre program,from I to 6. The next number, ny, specifies which layer the variable will be in. This layer
number is not needed if frequency is selected. A third number, nz, indicates, if zero, thatthe profile will remain continuous as the selected parameter is varied. If nz is not zero, the
selected parameter moves alone without a compensating motion in other profile parameters.
The card next gives the initial and final value of the parimeter to be varied and the initial
step size. Finally, the particular mode to be followed is indicated by giving an approximate
phase velocity and an initial step size. These must be chosen such that the subsequent itera-tion will converge on the correct mode.

The principal output of this program is the print statement at line 3 14. Each line ofoutput contains the value of the parameter being varied, the complex phase velocity, thedeterminant G, the derivative p-I, the error term E, the mode attenuation, the mode group
velocity (if frequency is the parameter being varied), and the step number. After the finalstep, the profile in its final form is printed out.
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CONCLUSIONS

1. An effective program for computing propagation loss in a layered ocean by nor-

mal modes has been developed. Complete documentation for the program is contained

herein.
2. Sediment layers are modeled as fluids in which densities, sound speeds, and ab-

sorption can be specified. This permits a complete wave solution for bottom reflected

sound energy.
3. A continued fraction technique for evaluating asymptotic series is shown to give

superior results in evaluating the auxiliary functions required in this program' the modified

Hankel functions of order I /3.
4.Amodefollowerpfogramgivenhereisusefulintracingeigenvalues'Suchtraces

are needed to understand the eigenvalue structure'

RECOMMENDATIONS

1. Improve the mode locating ability of this normal-mode program to make it self-

contained. It currently requires user interaction to locate eigenvalues'

2. Investigate methods to incorporate the effect of rough boundaries into this

program.
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APPENDIX A: NORMAL MODE PROGRAM IN FORTRAN

Thisprogramconsistsofthemainprogramandsevelsubroutines.Themainpro-
gram handles the input and output unO prifl-,ios much of the computation' This includes

profile preparation, *oJ. ,rur.-t , o.trrrnin"iion or depth function coefficients, normaliza-

tion, computation of depth functions, and summation of modes' Auxiliary functions are

performed by the subroutines SETUP and DET, which set up the determinant' then evaluate

it. This is the deter*inunt from which eigenvalues are determined' The subroutine HZERO

determines the Hantei functions of orderiero, second type, which gives the range depend-

ence of the modes. only a single term of the asymptotic expansion is needed for this

function.

SubroutineHANKELevaluatesthemodifiedHankelfunctionsoforder1l|3'by
which the depth o"p.no.nr. of the moo"s is expressed' The majority of computing time is

usually expended in this subroutine. s"tto"ti"t cFR is used by subroutine HANKEL to

evaluate continued fractions. Subroutine RCOEF evaluates and prints reflection coeffi-

cients when theY are requested'

43



I
2
3
4
5
6
7I
9

10
11
12
13
14
15
16
17
18
19
2A
21
22
23
24
25
26
27
2a
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

C TiIIS IS THE MAIN PART OF NLAYNMIMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION LAMBDA, LAMBDI
INTEGER COL
REAL R ATTEN, T REI RX
DIMENSION LOSPCH(5, 25)
ggyMgN /HAN/ H2R,H2I,HlR,H1 I,H2pR,H2pI,H1pR,H1pI,R
COMMON/INPUT/ Z(12), N, OI\IEGA, v, vI, coN( 12), csQ(12),1 CAY(12), LAMBOA, LAMBOI, G(12)2,RHO(12), GI(12), c SQI(12), cAyI(12)
cot/lMoN /t-xpo/ EXSUM, CNTR, RATIO(25)
coMt\4oN/DETMNT/ A (25, 4), Q( 25,4)
CoMMoN/pARTS/ ZT (1 2) ,ZrI(12) ,ZB(12) ,ZBI(12)

_coMMON/REFL/ AF('t2,2OO), AG( 12t2OO), BF( 12t2OO), ec1 12,2O0),2 ErcEN(350)r ETcENI(350), B (25,c),'ar(is,q), calrzj, ceriiil,3 CAYSQ( 12), CAYSQT ( 12), NN

4
3

D-IMENSIoN D(3s0), pr (g?o) , F( loo), Fr ( loo) , HzERo2(3so) |DA(350), sRES(3so), cAMivlAI (12), aLpx(rz),'
lzE\2r (350), DpK(12), ccu(12), GCUI(12), CI(12),

_pHASE v(3s0), pHAsI V(350), uu(2ooo), uur lZOOO!'COMMON /LTMIT / TLIM, EXPONT, SLiM
DIMENSION L0SS( 1 O1 )
DTMENSTON C( 12), DEpTH(52), DBLOSS(350), COL(120),lCONTR( 1 0), EF(2) , FMAG(350), FANG( lOO); '

2GArrMA( 12) '.JsMBL( 1o ) ,ijcouNr(s),,lcou(s) , r-eveL(41),pLEV(s),RLoss( 1oo)3, RLOS(101),RECVRS(51),TEST(3),' tr.rC(ri)EeurvALENcE ( FF, EF( 1 ) ), ( DEprH( i ;,sounce1, t oiprxt 2),REcvRs( r ) ),I IRLoS(2),RLoSS(1)) '

coMMor{ / AHZERO / HZ E ROR , HZ E RO I
DATA ( CONTR(I), I=1,4) /t jO.DO,95.D0,gO.DO,-IOOO.DOl,

1 (J SIVIBL(I), I=i,3) /lHl ,1y*,1H8/,*(ING(I)' I = 1, 10) /1Ho'tH1'1H2' iH3,tHe,lxs' rH6,lHz,1Hgr1Hg/ |2 (TEST(I), I=1,3) /.2DOtl.DO,5.OOlTLIM = 25.
SLIM = -8.54988C READ IN PARAMETERS
READ 11I K1, K2, K3, K4, K5, K6, K7, K8, K9C KEYS& 1-DEPT FN PRINTOUT, 2-LOSS PNiNrOUr, i.iirr-ECTION COEFF PRINTOUTC 4-CHANGE CONTOURS, 5-CONTINUE MODES11 FORMAT (1014)
l.riiNr rr, ht t N2, K3, K4, K5, K6r K7, Kg, hg13 FORMAI (6H1I(EYS , 1OI4)IF (Kl .LT. 7) co To 5
READ 11, M
READ 434, (SRES(I), I = 1,M)434 FORftiAT ( sD16. 7 )5 rF (K8 .NE. 1) cO TO I
READ 20, T LIM
SLIM = -DCBRT(TLIM,**2)
PRINT 30, TLIM, SLIM8 EXPoNT = DEXp((TLIM + TLIM) / 3.)K6:K6+1
INSUR = 0IF (K2 .LT. 10) cO TO 16R2=J12-19
INSUR = 1
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57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
7A
79
80
81
a2
83
84
85
86
a7
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
'108
109
110
111
112tt3

16

17

4
3
10

2
12

MPCH = 0ii-txs .r-r. to) co ro l7
K5 = K5 - 10
MPCH = 1'ir-'r'xa .rue. t ) Go To 3
ilai"io"iionin(r), I = 1'e)
CoHrntlo) = -1ooo'Do;;;;";,-(,r sr'reL(rl' 1 : t'e)
FORMAT (9Al )
READ .|O, N, FREQ
FORMAT ( I2, D1 O. 1 )
i i t r'r. EQ.o ) co ro ese
PRINT 12, N, FREQ

"lii,iot'?ig,'BH 
LAYERs' 'F1o''lr 3H Hz)

iElo zo, tztt)' I=l'N)
iiniHrSo, izitl, t=11N)
nino zo, (c(tl' I = I'N)

20 FORMAT (8O10.4)
irninisoi tctt), I = 1'N)
;;;d to, icsti;, I = 1'N)
i;iiHr5o, iceil), I = 1'N)
;;i;';o' iciromr(tl' I ='l'l'llr.iiitto, icnvrNairi' t = 1.'.1)
;;;; -16,'(DPK(I), I ='!'Il
i'niHr 50, iopx(l), 1 = l,N)
iriaij zo,'1er-ex(t), I = 1'l'llii?*t50, iaiPxirl' t = 1'N)
;;A;'-;6,'innoit), I = 1'Ilin?[r 5o' iCno(rl' 1 = lrN)
ii-ii*io"cr. o') co ro 1s
FREQ = - FREQ
ATTEN = 0'
GO TO 19

rB i-sq = (FREQ / looo')*'+2
ATrEN = .1 * ,r $-i'(1'-* F sQ) + 40' * F

i9 arrEru = ATTEN * 1'0936
PRINT 14,ATTEN

14 FoRMAT taH liieH = 'Glo'5' SHDB/KM )
iiiin=ATTEN/1ooo'Do30 FORMAT (9F14'5)

C COMPLETE PROFILE
D0 33 I = 1,N
IF (RHo(I) 'eO'o') RHo(Il,- l'oz
ir icstrl 'NE' o') Go ro 31

cB(I) = c(I+1)31 iF'ictrI 'ne''o') Go To 32
C(I) = CB(I-1)s2 ii-toPxtrj 'oi' o') Go ro 34
qI(l) = cBI(I-1)
GO T0 36

34 CI(I) = 0'
ii'iopx( r ) . EQ. o.) -99-To 36
i ='zzza7'5270a / DPK(I)-''
cI(I) = t -'i6iti(i -''tI)) * (T + c(I)))

36 CBI(1) = 0'
iF- tcirvt'ut r I '!E: 9'I-99.,ro 38

6 i*edir souno SPEEDS GIVEN

sQ/( too.+FsQ)
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114
I i5
116
117
118
119
120
121
122
123
124
125
't26
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
14F.
147
148
't49
150
't51
152
153
154
155
156
't57
158
159
160
161
162
163
164
165
166
167
168
169
170

IF (BLPK(I) .LE. O.) GO TO 37T = 2t2dt.jztoa / BL?K(I)cBI(I) = r -.g9lr !(r - cB(r)) + (T + cB(r)))37 I_= c(r) + (c(r)**i - 3.-;'ciirl*ialII: ct(I) * 13. * c(r)**2 - iiirl*ieltF (BLPK(r) .Lr. o.) GO TO 39-lEIl = cB(I)**2 - cBI(I)**2rEMP1 = 2. * cB(r) * cBi(r)
DENOM = TEMp**2 + TEMPI*,r.2TEMP=TEMP/DEN.M

* (z(r+1) - z(r))

r TEMpI)) /
TI TEMP)) /

IF (I .EQ. N) GO TO 27co TO 33C- **SPECIAL cAsE, GRADIENT REAL NUMBER3e rF (cr(r) .EQ. o.l co-io ai'-
TEMP = CB(I)**2
TEM = TEMP**2
TEMPr = cr(r)
CoEFI = s111;
C0EF2 = 2. * TEMp * CI(I) + TICOEF3=2.*r*CB(I)
COEF4 = TEM * CI(I) -'rEmp * ttOTDFN = 1.D20
DO 41 J = 1,10
FN= (((CoEF1^*_rEMpt) + CoEF2) * tempr + COEF3) * TEMp.t + COEF4FP = 1(4. * coEFl * rEmpr) + i. * coEF2) * TEMp, + coEF3TEMPl=TEMPl-FN/Fp
IF (FN .cE. OLDFN) co TO 43OLDFN = FN41 CONTINUE43 cBI(r) = TEMPl
GAMMA(I) = '?-i('s 1.!gI(l) *(TEry? - ggl(r)*,*2; - tt) /* (cB(r) * rENpr ) + c( ill' t'(zii+r ) _ z(r)r,co TO 2842 33tT3til=c(I) -r / (ce111**2* (z(I+1)- z(r)) *2.1
**SOUND SDEED AND GRADIENT GIvENIF (r .EQ. N) GO rO 33T = C(I) * (C(I)**2 - 3. * CI(I)**2)II: ct(I) * (3. * c(I)**2 - ii(rl-iztrF (BLPK(r) .EQ. o.) Go ro 2s

c

TEMPl=-TEMpl/DENOMGfyyl(Il = o.s * (c(r) - (T * rEMp - rr(z(t+l ) - Z(r))
GAMMAI(r) = 0.5 * (cI(I) _ (T * 1ggr, *

rF (BLPK(r) .Lr. o.) co ro 28TEMP_= (BLpK( I) / S4S7S.O5416)**2T=T*TEMP

38

TI = TI T.TEMP
TEMP = .s * c(r) / (z(I+i) - z(I)) -I-;,:tTI_:_!9RI1 rl * rr ; T .'iifipluu(I) = s4575.05416 * T / BL?K(t) /CBI(I)=CB(r)/t
GO TO 3?
*{.SPECIAL cAsE, GRADIENT REAL NUMBERIEIP = c(I) - 2. * GAMMA(ri ; i;ii;;TEM = TEMP**2 + CI(I)r.*2.

/ (z(I+t) - z(I)) * o.s

GAMMA(I) + T/r1. + T * T)

- z(r))
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171
172
173
174
175
176
177
178
179
180
181
182
183
184
r85
186
1A7
188
189
190
'| 91
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
2't4
215
2r6
217
2't8
219
220
221
222
223
224
225
226
227

XRE = (T * TEMP + TI * cI!l).1./ TE{
XtM = -(T * crtrl - TI * TEMP) / IEM
TEM=XRE**2+XIM**2
Ca1tl = SQRT((xRE t SQRT(TEM)) *'5)
cBi(i)=.5*xIM/cB(I)
GAMMAI(I) = O.
GO TO 33

29 TEMP = C(I) - 2. * GAMMA(I) * (z(I+1) - z(I))
catll = SQRT (T / TEMP)
GAMMAI(I)=.i',-'tii'i'ri-rr/c8(tl**21/(z(I+1)-z(I))
GO TO 33

27 N=N-1
33 CONT INUE

C COMPUTE USEFULL QUANTITIES

58 FBlilltt?t-,oH RE M '8x'6H lli! M 'ex'5H L/KM'8x'6H RE c '8x,* 6r-i rM. ,ui','ti" rie'c ioirorvr,ixliii-ir'r b aorrort!,10x,9H GRA0IENT

OMEGA = 6.283185307D0 r' FRhq
DO 40 I = 1,N
iirup = c(l)*t2 + CI(I;**2 -caitrl ='3I/!EGA' c(I) 1.TqM!-..^crviii) = -oMEGA r cl(I) / iqry?a;i iail) : cAY(I;**2 -.9fYI(ll:.:?
;;i ;oi 1r'1 = z.Do * cAY(I) '| cAYI(I)
rEMDR = -2. * rcnNrvui?i'i'c1v-!9iii:- olTlilllll.,'-"tll"!:llll
HHi 

= 
-;'.: i;iilffiiii ; qll ioiiit . GAMMAT(I) * crv so(I))

c cu(r) = (TEMDR - ciii * T!yPl-* tt!Ill,/,tly3,
E:;lii,=='i;;il;' --iiir .!5rvro1 {'ci(I)) / TEMP

rEMl = DcBRr ( -oso*i (";;firyrf ! Itl;?.LgiYTil !i 1.'-" * 2' *oMEGAr''*2 )

iertrrr =-onrnr.r (nss(GrNtMat(t) / cAMMA(I)))/ 3'
CRTC = TEMI * DCOS(TEM1I)
inror = TEtill * osIN(TEMII) ---^ii' tcrrvrr,,rrir I . LT. o. ) cRTG = -cllg^,
ii ionrrrrvraitit.r-r. o.) cRTGI =:9lI9Icir)-: (c(i)'* cRTG i cttr) * cRTGI) /.rlyl.-
diiil ='iiiil * cnict - ir(t; r' cRTG) / IEMP
ioriiir ='ciri * c(I) - GI(I)-* cI(I)
coni ri = oMEGA**2 / coN(tll:?.
xMI = -GI(I) * (Z(I+1) - LIL)t'irvr-= -a(r j i tz(I+1) - z(ll)
6pxtrt = -eoeo.Do * cAYI(I)
PRINT 30, XM, XMI,-OPiii) 

"CtT)' 
CI(I)' CB(I)I CBI(I)

* ,GAMMA(I), GAMMAI(I)a'iOr(ti = 2. * G(I) *,!Jtt)
40 o ioti) = G(I)**2 - GI(I)**!

C FIND MODES
NXT RA= 0
IrJ FLAG=0
NN=NN+1

15
52

IF (Ks.EQ.1) GO ro r5
DO 50 NN = I ,350ii ir.r FLAG .EQ. I ) Go ro sg
ir iruxrnn .Gr. o) Go To 44
NEIO OO, V,VI,STEP ISTEPI'NXTRA
FORMAT (4D10.4'Il0) -ii tNxrnr .GE.o) co To 62
V=V+VI*1.0-10

60
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228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
245
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
27 1

272
273
274
275
276
277
278
279
280
2A1
242
283
284

VI=51gp+STEPI*l.D-10
GO fu 8562 IF (v) 142,301t70142 IF(SrEP) 44,44,'t43C SEARCH FOR MODE143 SIZE3 = -1.
SIZE2=0
IrJ FLAG=1
V=-V
IF (NXTRA) 55,55,5455 NXTRA = 2054 XTRA = NXTRA
HOP=(STEP-V)/XTRA
H0PI=0.
I F( SIEPI.NE. 0. ) Hopr=(SrEpI-vI )/XTRADO 47 IJ = l,NXTRA
CALL SETUP
DET = VEL
DETI = VELI
CALL DETNT(N,VEL,VELI)
DELrA = VELnFlTr - \/Ftr
SIZE = DELTA*DELTA + DELTI*DELTI

, PRINT 56, V, VI, SIZEI VEL, VELI56 FORMAT (2F12,3, 3017.5)rF ((SrzE2.LT.SrZE3).AND. (SrZE.cT.sIzE2)) co To 4s46 SIZE3=SIZE2
SIZE2=SIzE
V=V+HOP
VI=VI+HOpI
c0 To 4745 V=V-HOP
TEMP = HOP / (SIZE - SIZE2)0ELTI = TEMP * (DET * VELI - DETI ,* VEL)
TEMP = .5D0 * (SIZE3 -
DE LTA = HQP r. f EMP
IF(HOPI.EQ.O) GO TO 49
VI=VI-HOPI
DELTAI=HOPI*TEMP
co To 4947 CONT INUE
Iul FLAG=0
NXTRA=0
GO T0 52

53 SIZE 2=-1 .
S IZE=0
GO T0 4644 NXTRA = NXTRA - I

stzE) / (sIzE3 + SrzE - srzE2 - srzE2)

V = 3. * (pHASE v(NN-1) - PHASE v(NN_2)) + PHAS€ v(NN_3)yI - g.* (pHASr v(NN-t) - pHAsr v1rut-zi! + erusi v(NN_s)_ sTEp = ( pHASE V(NN-I ) - PHASE V(NN_2) )'; . oool70 CALL SETUP
CALL DETNT(N, DET,DETI)80 FoRMAT (/t 2D2O.11, 4013.4)
VEL = DET
VELI = DETI
DELTA = STEP
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285
286
2A7
284
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
32.5
326
327
324
329
330
331
332
333
334
335
336
337
338
339
340
341

49

4g

DELTI = STEPI,i rutr-tA .Nt.o.) Go To 49
ir ioilrI .EQ.o. ) DELTA = 'oi
SIZE2 = t00.
Ql=pff**2+DETI**2ii txo .LT. 3) PRINT go' vr vI'
J=0
J=Ll +1

83
84
85

71
81
72

82

1F (J .Gr. 1s) GO TO 51
V=V+DELTA
VI=Vl+DELTI
IF (VI) 83,84'85
DELTI=DELTI-VI
VI = 1.D-18
CALL SETUP
NNN=N+N-1
DO 82 11 = 1,NNN
DO 82 IB = 1,4
BI(IA,IB) = qlIA'IB)
B(lA,IB) = A(IA'IB)
clt-l oerrur (N 

' oET ' DET I )
IF tK6 .NE. 1 ) Go To 72
pnrHi-e1 , v, vI, DET, DETI, sIzE, cNTR
FORMAT (2D20.1 1, 4D13.4)
IF (NXTRA .LT. 0) G0 TO 51
iENNN = DET * DELTA - OETI ,* DELTI
iEMNi = DETI * DELTA + DET * DELTI
TEMDR=vEL-DET
TEMDI=VELI_DETI
TEMOEH = TEMDR*TEMDR + TEMDI*TEMDI
IF (TEMDEN .EQ. o. ) Go ro s1 ------iCTuNruU - TEMNR*TEMDR + TEMNI*TEMDI
i;MiNU = TEMNI*TEMDR - TEMNR*TEMDI
DELTA = TEMRNU,/TEMDEN

- ?til: i.li-l[H(liil?tl.rr*os oN woRD LENGTH AND srzE oF pHAsE vELocITY * {'

tr (lasioeLral . LT. 1.0-14) GO T0 51

irzi = drlrl*oeurA + DELTI*DELTI-
ii-itsr2e.cr. srzE2).AND.(J'cT'3)) Go To si

DET, DETI' SIZE' CNTR

, E9.2 )

c*

92 stzE2 = SIZE * 2.
VEL = DET
VELI = DETI
GO TO 48

C FIND DEPTH FUNCTIONS
51 IF (INSUR .EQ. O) GO TO

TRE = (DET*f2 + DETI**2) / RX

IF (TRE .LT. 1E-lo) G0 TO 61
PRINT 998, NN' TRE

998 FORMAT (sH MoDE',i4,23H FAILED TO coNvERGE --
GO. TO 999

61 IF (MPCH .EQ. o) GO T0-63-
IF aNxrRA .LT. o) Go ro 63
TEMI = V * 1.O4
COL(1) = TEMl
TEMP = COL(1 )coltzl = 1ieiltt - TEMP) * 1'Dlo
TEMI = vI * 1.04
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342
343
344
345
346
347
34A
349
350
35 1

352
353
354
355
356
357
358
359
360
361
-462
363
364
365
366
367
368
369
370
37 1

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
39r
392
393
394
395
396
397
398

64
63

COL(3) = TEMI
TEMP = COL(3)
CoL(4) = (TEMI - TEMp) * i.DtO
CoL(s,1 = -xx
PUNCH 64, (COL(I), I = 1,5)
FORIY1AT (5I10)
AF(1,NN) = A(1,3)
AG(1,NN) = Q(1,3)
BF( I ,NN) =-A( 1,a)
BG(1,NN) =-Q(1,4)
PHASE V(NN) = y
PHASI V(NN) = y1
rF (K6 .EQ. 1 ) CO TO 73

11 PRINT 81 , V, V[, DET, OETI, SIZE, CNTR73 LL=N-1
IF (LL-1) 95,96,9796 I =0co T0 9897 DO 110 J = 2,LLI=.J+J-2
TSMN? = A(I,2)+AF( J-1 ,NN) - e(I,2;*AG(.J-1 ,NN)TEMNI = e(I,zy*ap1 J-1 ,NN) + ail,Zi*AGa ,J-1 ,ruf.r1

.TEMDR = A(I,3)*A( I+i ,4) - Q(r,S)*C( tir ,4)'_1__ A(I,4)*A( r+1 ,3) + e(r,4)*e( i+i',S)rEMDI = Q(r,3)*n( r11 ,4) + A(r,sy*g1 rir ,4)r Q(r,4)'i41 1a1 ,3) - At r,a j*,q('rii ,3)TEMDEN = TEMDR*TEMDR + TEMDI*TEMDI
TEMRNU = TEI/INR*TEIVIDR + TEMNI *TEMDI
TEIvIINU = TEMI'lI*TEt4DR - TEMNR*TEMDI
TEMP = TEMRNU,/ TEMDEN
TEMPI=TEMINU/TEMDEN
BF(J,NN) = -!TEMp,*A( 1a1 ,4) - TEMpI*e( I+t ,41)BG(J,NN) = -!IFypr*A( r+r ,4) + rEMp*Q( r+1 ,4iiAG(J,NN) = TEMpr*A( I+1 ,3) + TEMp*e( i+1 ,3i "

-1 1O AF(J,NN) = TEMP*A( I+1 ,3) - IEMPI*Q( I+1 ,si98 Mlt! = -(A( t+2,2) * AF(Lt_,NN) -e( t+i,2,1 *'AG(LL,NN))
TENINI = -(Q( t!2 ,2)*AF(LL,NN) + a1 r+z',2);AGall,NNi)
TEMDEN = A( r.l2 f)*A( r+2 ,3) + e( r+2 )3j*qi'i*z ,glTEMRNU = TEMNR*A( I+2 ,3) + TEMNI*Q( I+2 ,3)TEMII'JU = TEMNI*A( I+2 ,3) - TEMNR*Qi I+2',giBF(N,NN) = TEMRNU ,/ TEMDEN
BG(N,NN) = TEMINU / TEMDEN
AF(N,NN) = 0.
AG(N,NN) = 0.

FIND NORMALIZING FACTOR
D(NN) = 2.12429296D0 * p11911)**3 7 611;DI(NN) = 0.
D0 i1l I = 2,N
TEMRSP = AF( I-1 ,NN)*B( 2*I-2 ,?) - 4Ct f-r ,NN)*BI ( 2*I_2 ,211__ BF( r-t ,NN)*s1 2*t-2 , i ) - BGi r-.! ,NNl*ei ('i*'t_Z ,t)TEMrsp = AG( r-1_,NN)*B( z*t-2 ,2.1 1 4rt r;r-,rirNi*er ( 2*t_2 ,2)I BG( I-1 ,NN)*s1 2*I-2 ,r) + grt t-r ,NN)*ei ('i*'t_Z ,tlAX1 = TEMRSP+TEMRSP - TEMISP*TEMISP,AXII = TEMRSP * TEMISpAXII = AXlI + AXlI
Ill{9! = (G(I-1 )**2 + GI(I-t )**2;TEMDI = G(I),r*2 + GI(I)**2

95

c
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399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
4r8
419
420
421
422
423
424
425
426
427
424
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
44A
449
4s0
451
452
453
454
455

TEMP = (RHo(t-11 / RHg(I)) /-TEMDI
TEM1 =(zB ( r-ii '- 6ti:ii' * l?r.( t-l) *-GI( I-1) ) 1 rEMDR

*'l'1zr (i) *'G(Ii + zi1tt1 * GI(I)) * TEMP

TEMII =tzertrlii; cti:ii - 1? (i-t) i-91(I-t)) / rEMoR

*'-1zrl(il *'G(Ii - zi 111-*-G!(I)) * TEMP

TEMRSp = AF( I-1 ,NN)*B( 2*I-1 -ii - AG(.I:1-lfN)*BI( 2rI-1 '2) +

r BF( I-1 ,*tul*ei 
'iir:i r1l : ec( r-t 'NN)'rBl( 2t'I-t '1)

rEMrsp = AG( I-1 ,NN)*B( a*r-r lii i lri r-t-'NN)*BI( 2*I-l f2) +

1 BG( I-l ,*Hl*ei 
-tir:i 

rll +-ar( r-t 'NN)*BI( 2'+I-1 'l)
AX2 ='tElvlp5p*TEMRSP - TEMISP*TEMISP
AX2I=TEMRSP*TEMISP
AX2I=AX2I+AX2I
TEMDR = RHo( t--ti-z (c cu(l-1)**2 + c cul(I-l;**2;
TEMDI = RHO(I i i ic cuit ,i**2 * G cuI(I )+*2)
TEM2 = G cu(I-1i * remon - I qu(I) *-TEMDI..-^
TEM2I = G CUI(Ii * TEMDI - G CUI(I.I) * TEMDR

TEMRI = AXI*TEM1 - AXlI*TEM1I
TEMIl = AX1I*TEM1 + AX1{.TEM1 I
TEMR2 = AX2 * TEM2 - AX2I '* TEM2I
TEMI2 = AX2I * TEM2 + AX2 * TEM2I
oiHr.rl = D(NN) + rEMRr / RHo(t:]) t TEI!3--
niltrn, 1 - nl(NN) + TEMII / RHo(I-1 ) + TEMI2

111 :P*ltXYt.cr. 3) DA(NN) = DsQRT((D(NN) **2 + Dr(NN) **21 * FREQ /
* PHASE v(NN) )

EIGEN(NN) = LAMBDA
EIGENI(NN) = LAMBDI
IF (K6 .GT. 2) G0 To 13t
L=0
1q=24
D0 112 I = I 'NL=L+1
COL(L) = sNGL(zT(I)) r 100'
L=L+1
CoL(L) = SNGL(zTI(I)) * 1000'
K=K+1
coL(K) = SNGL(zB(I)) * 100'
K=K+1
COL(K) = SNGL(ZBI(I)) * 1000'

1 12 CONT INUE
PRINT t30, (COL(I) ' I=l,L)
PRINT I30, (COL(I) ' I=25'K)

130 FORMAT (4H Z = , tt(16'15))
M=N+N
PRINT I32' (RATIO(I), I = 1'M)

192 FORMAT (11(lx'2F5.3))
iai uB t-oss(NN) = - LAMBDI * 8686'D0

pHrNV = v * pxlsi uiHH-r) /((v - PHASE V(NN-I))* FREQ)
pRtNT 1 09, NN, EIGEN(NN), EIGENT (NN)'ijiNN) ;Dl (NN)',PHINV' OB Loss(NN)

109 FoRMAT (sl't N=:;;;ioi Lahreol .=)zets'?'4H != '2E15'71* 12H INT RANGi = , F8.0, 6H L,/K ', F8'5)
IF (K3 .EQ. 0) GO TO 50
CALL RCOEF (K3)

50 CONTINUE
C READ IN SOURCE AND RECEIVERS DEPTHS
3Ol NRT = NR

NR=0
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456
qcl
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
4A4
485
486
4A7
488
489
490
491
492
493
494
495
4q6
497
498
499
500
501
502
503
504
505
506
507
508
509
510
5't 1

512

NN=NN-1
}11Pl = Kl + 1rF (K1 .NE. 3) cO TO 321
NR = NRT
GO T0 sot321 READ 20, SOURCE320 NR=NR+1
READ 20, RECVRS(NR), FINAL, STEPPIF (NR.cT.s0) Go To 300350 IF (RECVRS(NR) .EQ.O. ) cO TO 3OO310 IF (FTNAL .EQ.0.) cO TO 320330 RECVRS(NR+1) = RECVRS(NR) + STEPPIF (RECVRS(NR+1) .GT. FINAL) cO TO 320

340

300
303

21

NR=NR+1
IF(NR .cr. 50) Go To 300
G0 TO 330
PRINT 303
FoRMAT (/21H SOURCE AND RECETVERS )PRINT 21,(DEPTH(I), I = 1,NR)
FORMAT ( 8F1 0.2)

COMPUTE DEPTH FUNCTIONS
DO 500 I = 1 rNNLOC=1
DO 305 ,J = i,NRrF ((.,r .EQ. 1) .AND. (Kl .cT..5)) GO TO 305
LCTR = 0380 rF((DEpTH(J) .GE. Z(LOC)).AND.(OEprH(J) .LT.371 IF (LOC .cE. N) GO TO 385370 LOC = LOC + 1

G0 TO 380
38s rF (DEPTH(J) .cE. Z( Loc) ) cO To 360390 LOC=l

LCTR=LCTR+1
IF (LCTR .GT. 2) cO TO 305
GO TO 380360 Xl = CAY (LoC) - EIGEN (i
X2 = Q4Y (LOC) + EIGEN (I
X3 = CAYI(LOC) - EIGENI(I
X4 = CAYI(LOC) + EIGENI(ITEMP=Xl*12-X3+X4
TEMP! - Xl * X4 + X3 r, X2
TEMDEN = G SQ(Loc) **2 + G sQI(LoC)**2
ZE = (rEMP * GSQ( LOC) + TEMPI ,* c SeI ( LOC) ) /ZEI = (TEMPI * cSQ(Loc) + TEMP * GSaI(LOC)) /TEMI = ZE
IF (zE .cT. -7.5) cO TO 438S = CAY(LOC)
T = CAYI(LOC)
DO 437 K = 1,2Q
TEMP=S**2+T**2
TEMPI = (EIGENI(I) * S - EIGEN(I) * T) / TEMP
TEMP = (EIGEN(I) * S + EIGENI(I) * fl / IeMp
ZE = ((1. + TEMP) * (1. - TEMP) + TEMpi**2) *
ZET = .2. * TEMPI * TEMP * coN(Loc)
ZR = ZE / -7.5
IF (DABS(ZR-l . ) . LT. 1 .D-3) cO TO 438S = EIGEN(I) + (s - EIGEN(I)) / ZR

z( L0c+1 ) ) )co To 360

TEMDEN
TEMDEN

coN ( Loc )
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513
5r4
515
516
517
518
519
520
521
522
323
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
54rt
547
548
549
550
551
552
553
554
55s
556
557
5s8
559
560
561
562
563
564
565
566
56?
568
569

437 CONTINUEq5a iF totr-oct .Lr. o') co ro 199^-;g : ci loc) * (oepix(,t) - z( Loc) ) + rEMl
IF (ZE .GT. -?.5) GO lO 442
F(iJ) = 1.0-12
FI(J) = 0.
GO T0 305

43e iE = G(Loc) * (DEprH(J) - l(Loc)) + zE
lF (zE .GT. SLIM) GO rO 442
F(.J) = 1.D-l2
FI(.J) = 0.
GO TO 30s

442 ZEr =GI(LOC) * (DEPTH(J) - z(Loc)) + zEI
302 cALL HANKEL(zE'zEI'',| )

F(J) =(AF(Loa;itliin'- AG(LOC,r)*Hlr + BF( LOCrI)*H2R - BG(Loc'I)
t *H2I) * RHO(LOC)
Fl(.J)=(AG(Loc,I)*H1R+AF(LOC'I)*Htl+BG(LOC'I)*H2R+BF(LOC'I)

1 *H2l ) * RHO( LoC )
305 CONTINUE

IF (Kl .EQ. 2) GO TO 451
ca 11 432

451 PRINT 270, DEPTH(NR)
270 FORMAT ( 7H1 DEFTH, is. r, 6x, 3HE-8' 1 7X'3HE-6' 1 7X I 3HE-4' I 7X | 3HE-2r

* 'l 7X,3HE 0 )
432 IF (K1 .LT. 4) GO TO 431

IF (K1 .GT. 5) GO TO 433
ineitr) = (F(r7**2 + FI(1)+*2) / DA(I)
GO T0 500

431 TEMDEN = D(I)*D(I) + DI(l)*01111
TEMRE = F(1)*D(I) + FI(1)*P1111
FD = TEMRE,/T EIvIDEN
FDI = (D(I) * FI(1) - DI(I) * Flll) / TEMDEN

433 DO 400 K = 2,NR
rJ=K-l
L=J*NN-NN+I
IF (Kl .LT. 6) GO TO 435
FF = SRES(I) i (F(K)'r{'2 + FI(K;r'*2) / DA(I)
GO TO 436

435 FF = FD * F (K) - FDI * FI(K)
FFI = FD * FI (K) + FDI * F(K)

436 UU(L) = FF
UUI(L) = FFI

452 CO iO' (400,41 O,420 '40O,40O,4OOr40o'400) ' Kl P1

C PLOT DEPTH FUNCTIONS
420 DO 210 II = 1'120
210 COL(II)= 1H

DO 220 Il= 20, 1 00 ' 20
220 coL(II)= 1Hl

FE = FF * FF + PP1 'T FFI
IF ((FE'GT.1E-20).ANO.(FE'LT'1OOOO')) GO lo 240
GO TO 2s0

240 INT = 1OO.DO + 2.1?147D0 * DLOG(FE)
COL(INT) = 1H*
GO TO 225

250 COL(2) = 1H*
225 PRINT 260, coL
260 FORMAT ( 120A1 )
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570
,71
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
62s
626

GO TO 400C PRii,IT DiPTH FUNCTIONS410 F MAG(.J) = SeRT (FF * FF +
I F ( FF ) 430, 44O ,450430 F ANG(,J) = ATAN( FFt / FF) *co To 400440 F ANG(,J) = 90,
G0 To 400

FFI * FFI )

57.2957795100 + 180.D0

4?0 F ANG(,J) = ArAN(FFt / FF) * 57.2952795100170 FORI!|AT ( 10F12.4)
r 80 FORilIAT ( / 1OE1 2 .3)4OO CONTINUE

IF (Kl.EQ.1) co ro 441co To 500441 PRINT 180, (F MAG(K), X = 1,,J)
PRINT 170, (F ANG(K), K = 1,.J)5OO CONTINUEC CALCULATE ATTENUATION AND READ IN RANGESrF ((K1 .Ea._1).0R.(K1 .EQ. 5)) pRrNT t80, (SRES(K),IF (K1 .EQ. 5) PUNCH 434, (SRES(K), K = r inN)NR=NR- 1lF (K2 .tr. 3) co To 5o.llF (K2 .EQ. 4) X8 = 3lF (K2 .EQ. 3) K8 = 2R2=0501 KX=N2+1
co T0 ( 561 ,551 ,551 ) , KX551 pRINT 533, NN.,N, C(1), Z(2), C(2), z(3), c(?), z(4)l* souRcE, RECVRS(40), FREQ533 FORMAT (.t H1, 215, 1OFlO.4)
ICTR=0
R Los(1) = J20.
LEVEL(1 ) = I
D0 562 I = 1,5P tEV(r)=40.
J Cou(l)=4
tJ COUNT(I;=-6562 CONT INUE
rF((K2 .EQ. 2).AND.(NR .cr. 5))co ro 772co To 56t772 NR=5

561 NL = NN
PRINT 524, NL524 FORMAT (I8, 13H MODES IN SUM )LL = |
IF (K9 .cT. 0) NL = K9
READ 20, RANGE, FINAL R, STEP RIF (KB .EQ. 3) PUNCH 30, RANGEI FINAL R, STEP RIF (RANGE) 563,1,564563 NN=NN+1
IEAD 11, K1, K2, K3, K4, K5, K6, K?, Kg, KgPRINr 11, K1, K2, K3, K4r K5, K6, Ki, K6, Kg
GO T0 301564 IF (FTNALR .LE. O. ) cO TO 550FINAL R = FINAL R + 1.D-3560 IF (RANGE .GE. FINALR) GO TO 551550 R ATTEN = RANGE * ATTEN - 9.9429946

K= I,NN)

c(4),
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627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
6s0
651
6s2
653
6s4
6s5
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
67 1

672
673
674
675
tr/tt
677
678
679
680
681
682
683

IF (K1 .GT. 5) RATTEN-=-0'D0
i; ixi .r:r. 5) Go To 535
i'r iriz .eq. zi nnrreH = 4'342944800
ir inauce * oil t-oss(NL) 'LT' 15'04)

521 NL=NL-1
522 DO 520 I = l,NL

IF (K7 .LT. 2) GO TO 523
FMAG(I) = PHASE V(I)
G0 T0 520

1e23 TEMP RE = EIGEN(I) * RANGE
TEMPIM = EIGENI(I)*RANGE
CALL HZERO(TEMPRE, TEMPIM)
HZERO2(I) = HZEROR
IF (K7 .EQ. o) GO To 520
iNac(I) : HZERoR**2 + HzERoI**2
HzER2l(I) = HZEROI

(UUI(K)**e

* oLoG( FREQ)
GO TO 522

+ UU(K)**2;
* HZER2I(I)* HZER2I(I)

520
536

537

L=O
DO 540 J = 1'NR
FF = 0
FFI = 0
TEMP = O.DO
DO 530 I = 1,NL
K=L+I
rF (Kl .LT. 6) GO TO 537
TEMP=TEMP+UU(K)
GO TO 530
IF (K7 .EQ. o) GO TO 534
TEMP = TEMP + FMAG(I) *
GO TO s30

534 TEMrM = UUI(K) * HZERo2(I)
TEMRE = UU(K) * HZERo2(I) -
PP=FF+TEMRE
FFI = FFI + TEMIM

530 CONTINUE
IF (K1 .GT. s) GO TO 535
IF (K7 .GT. O) GO TO 535
TEMP=FF**2+FFl**2

535 TRE=TEMP
RX = -4 ,3429448 * ALOG(T RE) + R ATTEN
R LOSS(,J) = RX
1F (.t1a . Lr . 2 ) Go ro s1s , ....,T RE = -c.sqz6qi8 *-ALoG(uu(K)**2 + uuI(K)**2;
PRINT 170, RECVRS(J)' RX' T RE

IF (K4 .NE. 3) GO TO 54s
545 CONTINUE

L=L+NN
1F (K8 .LT. 2) GO TO 540
IF (K8 .EQ. 3) Go ro 538
Lpci = -RLossi.l) * to.Do + 1400.500
IF (LPCH .LT. 0) LPCH
ir ir-pcx .cr. 999) LPcH = 999
LOSPCH( tJ, LL) = LPCH
IRNG=RANGE/1000.D0
rF (LL .EO. 2;)'puxii-gos, IRNG' (LOsPcH(Jr LLL) 'LLL

903 FORMAT (I5'25I3)
GO TO 540

538 CONTINUE

+ uu(K)
uuI (K)

t 1 ,25l,
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684
685
686
647
688
689
690
69t
692
693
694
695
696
697
698
699
700
701
702
703
7A4
705
706
707
70a
709
710
711
712
713
714
715
716
717
71A
719
720
721
722
723
724
725
?26
727
72a
729
730
731
732
733
734
735
736
737
738
739
740

LOSS(J) = (140.05 - RX) * 19.IF (Loss(u) .LT. O) LOSS(d) , oIF (Loss(J) .cT. e99) LOSS(J) = 999540 CONTINUE
, co To (770,780,716),KX
C PLOT DB LOSSES

712 COL(15)=1111
COL(39)=1HI
coL(63)=rHI
COL(87)=1HI
coL(111)=1HI
coL(27)=1HX
COL(51 )=1HX
COL(75)=1HX
coL(99)=1Hx
I PLACE = 135
DO 797 tl = 1,NRIPLACE=IpLACE-24783 IPLOT = P LEv(tJ) - R LOSS(J)IF (l PLOT .cT. 1O) cO TO 776crJ 12 77?776 P LEV(J) = P LEv(,J) - 20.J COUNT(,J) = .J COUNT(J) - 2J COU(,J)=rJ COU(rJ)-2786 COL(I PLACE + 1) = tHOIF (P LEv(J) - 1oo.l 778,779,78177A rJC = r, COU(J) + 1

COL( IPLACE) = ING( rJC)
GO TO 783779 C0L(I PLACE) = tHOco T0 782781 rJC=JCOUNT(J)+l

_ COL( IPLACE) = ING(,JC)7A2 COL(I PLACE - 1) = 1Hlco TO 783777 IF (I PLOT .LT. -9) co To 784co ro 785744 P LEV(.J) = P LEV(J) + 20.J COU(,J)=,J COU(,J)+2J COUNT(,J) = .J COUNT(J) + 2co To 786785 IPP=IPLACE+IPLOT
COL(IPP) = 1H+7A7 CONTINUE
co TO 750C CONTOUR LOSS FIELD7AO DO 590 J.J = 1,120590 coL(JJ) = 1H
coL(31)=1HI
coL(61)=1HI
coL(9.l )=1HI
DO 640 JJ = 2t41
LEV=1

520 rF (RLOS (JrJ) .LT. CONTR(LEV)) GO TO 600GO TO 610600 LEV=LEV+l
co To 620
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741
i42
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
741
782
783
784
745
786
787
788
749
790
791
792
793
794
795
796
797

610 rF (LEV .EQ. LEVEL('J'J)l
aso ir ir-ev .Gt. LEVEL(JJ))

GO TO 670
660 II = LEVEL(tJrJ)

GO TO 680
670 II = LEV
680 rJrJrJ = I24 - 3*JJ

COL(JJJ) = ,J SMBL( lI)
LEVET(rJrJ) = LEV

640 CONT INUE
COL(1) = lHI-FniHi zor, (coL(Il ), I1 = 1 't19)?16 DO 690 rlrj = 1'120

690 C0L(JJ; = 1H
ICTR=ICTR+1
IF (IcrR .EQ. 10) GO TO 700
G0 TO 714

7OO TEMP = (RANGE + 1.\ / 10000'
IND = TEMP
coL(2) = ING( IND+1 )
TEMPI = IND
rFMp = .rFMp - TEMpI) I 10.
IND = TElvlP
CoL(3) = ING( IND+l )
TEMPl = IND
IND=(TEMP-TEMPl)*10.
coL(5) = ING( IND+1 )
COL(4)=1H'
CoL(6)=1HK
CoL(7)=1HY
C0L(8)=1HD
coL(e) = lHS
I CT R=0

714 GO TO (7 10 ,7 121 ,K2
?10 CoL(31)=1111

COL(61 )=1Hl
coL(91)=1HIgO 72O .J.J = 1'40
TEMP = LEVEL(JJ)
TEMPI = 0.

830 IF (LEVEL(rJJ) 'Gr' LEVEL(JrJ+1)) GO TO 730
GO TO 740

?30 Il = LEVEL(d,J) - 1

KK=1
860 EX = (CoNTR(II) - R LOs ('J'J) )/ (RLOS (J'J+t)

DO 760 LL = 1,3
IF (EX .Lr. TEST(tL)) GO

760 CONTINUE
LL = 4

8OO rJrJ LL = 1 25 - 3*JJ - Ll-
COL(.JJLL) = 'J SMBL(II)
GO TO (810'820) 'KK810 LEvEL(JJ) = LEVEL(JJ) - 1

T0 800

GO TO 830
740 iF tiEviLt.l.ll . LT. LEvEL(JJ+l) ) Go ro 840

GO TO 720
840 II = LEvEL(Jrl)

c0 T0 640
GO T0 660

- coNrR(II))
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798
, :r!,
800
80r
802
803
804
805
806
ao7
808
809
8r0
81 1

812
813
814
815
816
sI7
818

KK=2
GU IU 8bO420 LEVEL(JJ) = LEVEL(JJ) + 1

GO TO 74072O LEVEL(JJ) = TEMP
COL(1) = 191750 PRINT 261, (COL(I1), l1 = 1,119)261 FORMAT (lx, 119A1)co To 581C PRINT DB LOSSES77O PRINT 580, RANGE, (R LOSS(K), K . I,NR)LL = LL + 1

IF (LL .GT. 25) LL = 1580 FORMAT (F9.0, 2X, 18F6.1)581 RANGE = RANGE + STEP RrF (K8 .NE. 3) cO TO 560
PUNCH 980, (LOSS(l), I: 1,NR)980 FoRMAT (2613)
co To 560999 STOP
END
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2
34'
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6
7II

10
1t
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
2A
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31
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33
34
35
36
37
38
39
40
41
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43
44
45
46
47
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49
50
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52
53
54
55
56

)r)
r)
r)

25

26

30

SUBROUT INE SETUP
irvrFliiri oouaLE PREcISIoN (A-H'o-z)
OOUEUE PRECISION LAMBDAT LAMBDI
coMMON /HAN/ A2R,Hzi,iln,Ht t,xzpn,H2PI'H1PR'HlPI'EXPoNT
COUrtnOr'r 

'lexCO/ EXSUM' CNTR ' RATIO(25)
iorrrNoruzberMNT/ A( 2s,4),Q( 25,11
coMMoN/rNpur/ ztti\, fr,-oNEcn,.v' vt, coN(12) ' GsQ(12) '

r 
-cnvtt'2) , tnt{aDA, LAMBDI' G(12)

z-nxoirzi. or(12), G sQI(12)' cAYI(12)
-'CorvtNoru' tttnitt1 TLIM' EXPoN' 9!l!.

coNNolrl pin i s t zr ( 1 2 ) ; zrI ( I 2 ), zB ( t 2 )' zBI ( 1 2 )
DENOM=V*V*Y1*VI
LAMBDA=OMEGA*YiOENOM
LAMBDI = -OMEGA * YI/ DENOM
M=N-1
DO 10 I = 0'M
IF (I .EQ. 0) GO TO 35
IF (zR .GT. -7.4) GO TO 25
IF (c(I) .LT. o.) Go ro 25
ze = c(il * (z(I+1) - z(I)) + zE
IF (zE .LT. -?.5) ZE ='7'5
GO TO 26
CONT INUE
ze = ctI) * (z(I+1) - z(I)) + ZR
lF Qe . LT. SLIM) ZE = SLIM
CONT INUElq = cr(I) * (z(I+1) - z(I), + zI
zB(r\ = zE
ZBI(I) = zQ
CALL HANKEL(ZE'ZQ'O)
zB(t) = 77
zBr(r) = zQ
RAT IO( 2* I )
A(2*I,1) =
Q(2*I,1) =A(2*I,2) =
Q(2*I,2) =
A(2*I+1 ,1 )
Q(2*I+1 ,1)
A(2*I+1,2)
Q(2*t+1 ,2)
CONT INUE

= EXPONT
62p * nHO(
921 * nHO(
61p * nHO(
91 1 * RHO(
= H2PR * G(
= H2PI * G(
= H1PR * G(
= HlPI * G(

- H2PI r,
+ i{2PR r,

- HlPI *
+ H1PR *

SQI(I+1 )**2

+ Y ,T G SQI(I+l)) / GSABS
- x * G SQI(I+1)) / GSABS

GI(I)
GI(I)
GI(I)
GI(I)

35
GSABS = C SQ( I+1 )**2 + G

X1=CAY(I+1)-LAMBDA
X2=CAY(I+1)+LAMBDA
X3 =CAYI(I+1) - LAMBDI
X4 =CAYI(I+1) + LAMBDI
X=Xl*X2-13*X4
Y=X1*X4+13*X2
ZT(I+1)=(X*GSQ(I+1)zri(r+i ) = (Y * G sQ(I+l)
ZR = zT(l+1)
Zl = Z'lI(l+1 )

=zR
=Zl

ZE
ZQ
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57
36
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
7a
79
80
81
a2
83
a4
85
86
a7
88
89
90
91
92
93
94
95
96
97
98
99

100

* RHO(* RHO(* RHO(* RHO(

rF (zR ,Gt. -7.s) co To 40S = iAv(i+l)
T : CAYI(I+1)
CON =
CON = 1. / CON**2
DO 36 J = 1,20TEMP=S**2+T**2
TEMPI = (LAMBDI + S - LAMBDA * T)
TEMP = (LAMBDA * S + LAMBDI * T) /ZR = ((1. + TEMP) * ( t. - TEMP) +
R = ZR / -7.5IF (DABS(R-l .) .LT. 1.0-3) cO TO 4.tS = LAMBDA + (S - LAMBDA) / R

(G(I+1) * s + cI(I+1) * Tl / (S,*+2 + T**2)

/ rEt6P
TEMP
TEMPI{.{.2 ) * CON( I+1 )

36 CONTINUE
41 ZI = -2. * TEMPI *

ZT(l+'l ) = ZR
ZTI(I+1 ) = ZI

40 CONTINUE
CALL HANKEL(ZR,ZI,O)
Zr(I+1 ) = zR
7fl(.1+1 ) = 7I
RATIO(2*I+1 )IF (r .NE. 0)

TEMP * CON(I+1)

= EXP0NT
GO TO 45

45

A(1,3) = H2R
Q(1'3) = H2I
A(1,4) = HlR
Q( 1,4) = HlI
GO TO 10
CONT INUE
A ( 2* I ,3 ) =-H2R * RHO( I+1 )Q(2*I,3) =-H2I * RHO( I+1 )A(2*I,4) =-H1R * RHO(I+i)
Q(2*I,4) =-H1 I * RHo( I+1 )
A ( 2* I+t ,3 ) =-H2PR * G( I+l
Q(2*t+t,3) =-H2PI * G(I+1
A(2+I+1 ,4) =-HtpR 'r 61111
Q(2*I+1 ,4) =-HlPI 'r G(I+1
CONT I NUE
A( 2*N-2
Q( 2*N-2
A( 2*N-1
RETURN
END

+ H2PI ,* GI ( I+1 )- H2PR * GI(I+1 )+ HlPI * GI(I+1)
- HlPR * GI(I+I)

10
,4)
,41
,4)

= Q.
= Q.
= 0.
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2
3
4
5
b
7
8I

10
11
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14
15
16
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18
19
20
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23
24
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27
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32
33
34
35
36
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38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
5tt

600

STJBROUITNE UETNT(NIDET'DETI) -iM;l;aii oousLe pnictsroN (A-H'o-z)
OOUSLE PRECISION DETI DETI
;oMMoN /ExPo/ Exsutlt' cNTR,-RATIo(25)
6onr'roHzbirmrui/ l(zs'4)' Q(25'4)
DLOSS = 1.
CNTR = 0.
DET = A(1 '3)DETI = e(1,3)
LIM=N+N-3
DO IOO I=l,LIMr2
rJ=I
K=4
L= I
M=3
II = 1

GO TO 500
10 d = I + 1

K=2
L=rJ
M=l
GO TO 600

30J=I+2
L=.J
ll=2
GO TO 600

40L=I+1
M=2
GO TO 500

50K=3
M=3
II = 3
GO TO 600

60K=4
IF (I .EQ. LIM) GO TO 70
M=4
II = 4
GO TO 600

70K=3
II = t
GO TO 700
i-='ltL,M)*A(L,M) + Q(L,M1*Q(L'M). .; = iiii;fty*i1l,rirl + a(.r,K)*Q(!rM-).1./ c
6r ='lcii,xy*r1L,rir) - A(d,K)*Q(L'M))/c
GO TO (10,5O)' II
;[ =-ri.l,il : (A(L,M)*B - Q(L'M)*Bl)
i5r = qii,il - (A( 1,fu)*BI + Q(L'M)*s)
TEM=1p**2+TDI**2
iErrrp = A(J,K)*{,2 + Q(rJ,K)'}*2
TEMP=TEM/TEMPrF (II .EQ. 2) GO ro e2
IF (II .EQ. 4) Go ro s2
o(,J:K) = Q(rl ,K) * l0.D-18
li,l'Xi = A(rJ,K) * 10'D-l8ii-iiimp .cr. io.o-ss) Go ro e2
CNTR - CNTR + 1.

500
80

6r



57
58
59
60
61
62
63
64
65
66
67

GO TO 9092 A(tJ,K) = 19
Q(,J'X; = 19190 co To (700,40,60,70),II

700 C = DET*A(.J,K) - OETI*e(J,K)
gETI = DET*e(J,K) + DETI*A(J,K)DET=C
c0 TO (30,100), II

1 OO CONTINUE
RETURN
END
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SUBROUTINE RCOEF (K3)
irvrFiicli oouet-E pnEclstoH (A-H'o-z)
coMMoN/INPUT/ ;(1;t;-t't,-omecl' 

- v' vI' Gcu(12)' GSQ(12)'
r 
-clv(r'zl, LAMBDA, LAMBDI' -9(l?1.i,iHoiiii, crtizl' c sQI(12)'.cAYI(12)
DIMENSIoN pp1r2), RI(12), !l!t'1"*i(tz)' cvsq(12)' cYsQI(12)
coMMoN/REF tt iiiiz,ioo); 19t tz'Lool''ar(t 2'2oo;' aG( 12t2oo)'

2 EIGEN(ssol, iideNiii;oi,anizs'cj"itizs'ci ' cB(12) ' cBI(12),
i cavsoil2), cAYSQI(12)' NN
NM=N-1
I =K3IF (I .GT. NM) I : NM

t10 rJ = I + I
K=J+1
lF (NN .NE. 1 ) GO TO 102
L=I+1
iervrP = cB(I)**2 + cBI(I)**2
cY = oMEGA * cB(I) / rEM!- --CYt = *oMEGA * CBI(I) / TEMP
CYSQ(l) =CY**2-CY[**2
CYSQI(l)-CY+CYIivsqrir) = cYSQr(r) + gYsa.llll_

102 EL se = c ysai;i'l'ercentNNl:i? + EIGENI(NN)**2
ELsQI = c YSaiiil --i'otj'* ircen(NN) i'-EIGENI(NN)
TEMP = 515q *-dioRT (ELSQ**2-+ ELsQI**2)
IF (TEMP.LE. o'DO) 90-TO 107
EL = DSQRT (TEMP * .sDO)
Eur = ELSeI / (EL + EL)

103 A = AF(I,NN)*eRiJ,2) --19!Il.Il)*BI(Jt2)
* + BF(I,NN)*eRti,i )-- ec(I'NN)*BI(J',1 )

g = AF(I,NN)*eitj'i) + AG(I'NN)*BR(J'2)
* + BF(I,NN)xeiii'i I + BG(I'NN).*BR(J'1)-
E = AF(r,r.rr.rl*aiik,zl - 49!I:.If )*Bl(K'2)

* + BF(I,NN)*BRti'i l'- BG!l'NN).*BI(K'1)-
p = AF(r,Ntll-eici,i) + nc(l,.NN)*BR(K'2)* + BFli,ttHy'*eiii,i )'* 89(1:fll*BR(K'1).
c = (F * eL I i i iur) / (ELsQ + ELsQi)
g = -(6 * EL *-r * ilil 7 (ELSQ + ELSQI)
TEMP = (A + c)**2 + (B + D)**2
RR(I) = (A**2-1 C*'tZ i B**2 -^D*'+2J / TBMP

RI(I) = -z.oO '* (A * D - B * C) / TEMP

1O FORLAT (10013.5)
RA(I) = 0
ii'icetll .Gr. v) Go ro 104
RX = CB(l) / V

RA(I) = Acos(RX) - ?Z:??6 ^104 iriri = RR(l)*+2 +.RI(I)*'*2
Rr(I) = 1.Do / RT(I)
Rr(l) = -DArA;{2 tni(rt,!R!ll) * 5?.2e600
inirl = -4.342s4a0 * DLoG (RT(I))
IF'(K3 .NE.1) GO TO 108
I = l+ I
IF (I .Lr. N) GO To

1 05 CONTINUE
PRINT 106, (RR(I)'
PRINT 106, (RI(I)'

110

t - 1,NM)
I = 1,NM)
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64
65
66
67
68

PRINT 106, (RT(I), I - l,NM)PRINT 106, (RA(I), I r t,NMi106 FORMAT (9c13.4)
RETURN

lgg !!l!,ll_10e, z(L), RR(r), RT(r), Rr(r), RA(r)109 FORMAT (9H AT DEprH, F7.O,ex'io! i ;,,F9.4',7H DB, OR,Dl2.4,,f,_8H, pH 4 = ,F9.3,16H DEGREES, GR A r:F8.2tgx oEcnegs. )-RETURN1O7 EL = O.DO
ELI = DseRT ( DABS (ELSQ))co To 103
END
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SUBROUTINE HANKEL (zR, zI' In)- ,r.^h u.6, b
coMr\,roN /HAN/ H2R,Hii'ntR,H1 l,H2PR'H2Pr'HIPR'H1 Pl'R
INTEGER FLPS ' FLQUAD
OOUEUE PRECISION ZMLA2, TLIM' R

coMMON /lltilLl / TLIM,EXPoN
DOUBLE pRECIsIoN'"'in,zi, nzR'H2I'H t R' H1 I'H2PR,H2PI,H1 PR,Hl PI' A0'

'l A,BO,B,CO,C,DO,D,-'-a1a--- 91:I:K1',K2',CON4',sToRE1'STORE2'2 sroRE3, sroRE4, si6nes,ironeo, srolei' sroREE' sroREg' sToRl 0' sToRl 1'
3 sroRl 2, sToRl s, sioRia, ironr s, sronro' sront e ! cllc?:c1.'cPR'cPl' crHR'
4 crp,FR,FI,rpn,rpi,''- itn,rtt'rzn'F2l'GR'Gl'GPR'GPI'GlR'
5 Gr I ,c2R,c2 I , Hr r n , it 1 I ,H12R ll13l lHl 1 PR 

' 
H1 1 P I 

' 
H12PR ' 

H1 2PI '
G H2r pR, H2i p l, Hzzoi',x zibt,nzt!rH3iI'H22R'H22I' -.. -Li'sR' sl'sPR'
? spl,s2, rHR'x,iR,ii,xn1,11111f ir' 4Mr1!!a'zM1R'zMlI'I EXpoNT, nex, znriliri,zniruzl ; 4!i!11'zRrNqt' znI2l:3lI2I' zRT2M'zRr4R'
; t;ii;i,' - zeza,zsir,srp,stontT'srHR:c519?liPl].?^

DTMENSToN A( 4o), eiio )lciao I' qt19 ), c4( 20)'04 ( 20)'zMLA2(40 )'
r-ipnieoj, xprtaot, cs(zol, Ds(20), zMLAs(20)

DATA (A(I),I=1'36) / -- --* - 1.550727a61s4871s70-ool ' 5'16999?91]829052370-03'
1 -7. 1 7929505seririeioo-os, 5'43886034493i9-i59Eo--07'
2 -2.589933497segs1 i3iD-og' 8'4638349s94428s089D-1 2 '
3 -2.or5regTgsealiqdiso-tq' 3'650722463527799730-17'
4 -s. 2 o 0459349 zsqi oolt}-zo , 5 ' 97 7 53948 247 6667 2oD-23 '
5 -s.Blosll7s23qsailzgo-za, 4'4s2499o0979787999D-29'
6 -3.o31375B5oooooqiaeo-sz, 1'76038086531129261D-35'
7 -a.Bgoglzqstoaiisaaro-sg' s'94096296589855249D-42'
B -1 .54s47sB72go i sgerso-qs, 5 ' 3999848808574 1 835D-49 '
9 -1.691?245862s'aleoteD-sz, 4'778883013375085270-56'
A -1 .2234i2353o6q6iszio-sg' 2'85191690828s91078D-63'
B -6 .ola2sl2lozsqist460-67' t'1890.t6877980096140-70'
c -2.1 42372753t tzigozqo-z q , ?'79792:?0^9??iil3i iR-31'; -;: ;;;; r;;;;iie6aaisD-ez ' ?.99:1:1::9::313:1:R::9'; :i:;;;;;;;;;;;;;s;ii6D-8, : 1 .1171?9?2\?1??1?12o^-?2:; -i'.;;r;;\;;;ieoois3zo-gz' 1' 9l:?19:i ?!1:2\22'"2:: ::'6 -i '.;;'ir;;;aiiai683oD- r o6 ' 1 '9991?9919??9?1333R:l 93:; :i'.;;;:";;;6;se;a65ioD-r r g' 1' 3385s28s5137 1267aD-1 17 /

DATA (B( I ), I=1 ,36) /.* -5.65248937620229890-002' 1 '34583080385769022D-03'
1 -t.49s36z559eqi8z8ozo-os, 9'58568948616588476D-nB'
2 -3.994037285goiqsisgo-ro, 1'167a4715962060000D-12'
g -2.527AO7704eot"q9sioo-rs, 4'21301284134415583D-18'
4 -5.57276830AOSOZSOZAO-zr, 5'992223987802463200-24',
5 -5.3406630907:5oiii6r,-27, 4'009506824874649s2D-30'
6 -2. s7Ol 96582Or r gsqezo-ss, 1 '4231432351 1 1 824370-36 '
7 -6.875O88O92SZZ65SSeo-qo, 2'9230A1671908016150-43'
g -i ,1o221tezsooso2ioeo-qo, g '711171 127956305320-50'
9 -1 . 1 225s6300 oaliisigo-ss, 3 ' 06709371 s97617291D-57 '
A -7.6o68z92s5egiie60oD-er , 1 '72o235o1 9424080960-64 '
B -3.5615631 etziiitetsD-ee, g'77618566821426sa5o-72'
c -r . 1 BBB045o3r siceizqo-zs, 1 's2925't 0600381 1 30 1 D-79 '
o -2.go4o236g77ieeo3ogo-ee ' 4 ' 0681 oo41 7001 124?70-87 '
E -s.3t361ozgso6eogieoD-gr' 6'487s252564184295sD-95'
F'7.421ss7tqszsliliiqo-gg, 7'969885250s3346460D-103'c -B.o5o389tcrg5i99a5so-ioi, ?'662658615s84194310-111'
H -5 .8S46887 83C6190S2S0- il s ' 5 . 84835948 3056322840-'t t 9 /
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57
53
59
60
61
62
53
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
a2
83
a4
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
't03
104
105
106
107
108
109
110
111
'112
113

OATA (c(I),1=1,361 /* -3,101455723097431 4D-002, 6.4613660897863154?0-04,1 -6.526632413925571180-06, 3.884900246384268s60-08,2 -1,5234902926997i316D-10, 4.23191747972142544D-13,

A -1.882265159468701120-61, 4.19399545336163351D-65,

3 -8. 76 I 7339 1 24667 1 9350- 1 6,4 -1 .793261 844743 000 1 6D-2 1 ,5 -1,61729964352i23680D-27,6 -7.393599534307 42A970-34 ,7 -1 .A91662223631 305't 9D-40,8 -2.91 5991 83566300s9 |D-47 ,I -2.867329808025051 1 6D-54,

B -8. 56092 1 521 45669220D-69 ,c -2.7A230227677570174D-76,0 -6.632184666433306210-84,

't . 404 1 240244337691 3D-1 8,
1 .86798 t 088273958500-24 |
1 . 182236581 525757890-30,
4. 00086550 29802 1 o48D-37 ,7.881 92593 1797 t0497D-44,
9. 642830 1 443A8247 05u^-51 ,
7 . 7 07 A75428024331 08D-58,
't . 60677956 4A37 967 7 5D-7 2,
4.45AA17751 2431 1 1 760-80 i9. 1 80765042 1 2805399D-88 ,

.431 987564 427470 1 0D-95 ,

. 7 228021 I 647 07 2522D- 1 O 3,

.624221 798566286890-1 1 I,

. 21 690259s579206 1 6D-1 1 9,/

- .587637 44212962962940000 ,-. 51 I524691 4604383039D00.l,
- .1 41342043s039637896D002 ,- .2764948541 1 18776 1 09OOO2 ,- ,45662621 1 46 1 85479 1 6DOO2 ,-. 681 743 1 262327333036D002,
-.9518494701 1 821 74927c002,
-. 1 266948822584689090D003,
- . 1627 32707375197037 6DO03 ,

- . 52426938 657 4O7 407 34DOOO,
- . 4986228C 807 82250 I 1 7OOO1,
-. 1 396 1 075 1 31 923849560002 ,- .2744,t 048801 201 192 I I DOO2 ,

E -1 . 1 85685786 14594524D-91 ,F -1 .62081 229703 I 65829D-99,G -1.7229744A3919117130-107,
-1 . 44s68028354809692D- 1 1 5,

DATA /nrl),I=1,361 /
-2,26Oe957504809195D-001, 9.42oa1562700383t550_03,

-1.49536755984187802D-04, 1.24613963320156502D-06,-6.390459557443923180-09, 2.218909603279t39990-11,
-5.561 17995057,128569D-14, 1.05325321033603896D-16,
-1 .560375 1 26423761 42O-19 , 1 .85758943 62187635sD-22,-1.81582545084923't27D-25, 1.48351752520362032D-28)
-1 .02807857304,1781 93D-31 , 6. 1 1 951 591 098084481 D-35,-3. 1 62s4052247072083D-38, 1 .4323 1 0Ol 9234927910_41 |-5.73153259001571794D-45, 2.041144120375967930-48,-6.510826540274219860-52, 1 .A7092716674546548D-55,
-4.a6840272377170304D-59, 1.15255746301413424D-621-2.49309423r049392690-66, 4.946615537796414070-70 |-9. 0349 1 42242A5687A00-7 4, 1 .5241 0A337 4301 Og28D-77 ,-2.381791432145818530-81, 3.457885354450956060-85,
-4.675977490805890540-89, 5.9040119A3340770890-93,
-6.9762637t657895650D-97, 7.73O788693017460660-101,
-8.05038914195299455D-105, 7.892538374463720140-109,
-7.2977701 10461 137440-1 13, 6.374711836531 3g1goo-1 17/

H

I
2
3
4
5
6
7
I
9
A
B
c
D
E
F
L,
H

DATA(C4( t ), 7=1 ,19) /
. 1 041 666666666666666D000,

-.22907 1 6053934337712D001 ,-. 9062847663874030839D001,
- .203296741 761 1 733257DO02 t-. 36093767 1 25929491870002,
-. 563561 1 849738394099D002,
-. 8r 1 1 7 244a330a463849D002,
- . 1 1 O37 7 4 469890957 246D003,
- , 1 441 39 1 3537 1 0093869D003 ,
-,1A26444261 1 46441 383D003/

DATA(04( I ), I=1 ,19) /-. 1 458333333333333333D000,
-.21 9001 07400 1 06261 22D0O1 |-. 891 0269876251375731 0001,
-. 20 1 38 1 0597032928847D002,

f
ir
*
*
*
*
*

*
*

*

*
*
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114
t15
t16
117
118
119
120
121
122
123
124
125
126
127
12A
129
130
131
132
r33
134
135
136
137
138
r39
140
141
142
'I 43
144
145
146
147
148
149
'I 50
15r
152
153
154
155
156
157
158
159
160
161
162
't63
164
165
'l 66
167
168
t69
170

* - r 358697030 5443466737D002, -.45423931 7 1194671 533D002 '| -.5blu3ti3b448O5757OOOD0o2, -.67908743957298515690002'
* -. 80839 1 9802992951 438DOO2 I - . 9489495581 08203848 1 D0O2 '*..1.1007598935585749100003'-.1263823305425793323D003'
* -.1438158255226323270D0O3, -.',t6241253560510208670003'
* -.18264308.l0500566861D003/
DATA(C5(I)' 1=1,19) /* -.rioiOeS3SS3333333322DO0O, -.22855450236966824530001'

,r -.37786353593898952400001, -.52746231607110598620001'
,t - ,6771926170404923857D001 , -.826995494134027407 5D001 l
| -.9768433620097970692D001, -.1126?213747680068060002'
* -. 1276620743A00279?21D002, -.1426535892246475774OO02'
* -. 1 57646308877a9273a5Do02| -.17263997 30395,| 79550D002 'lt -.18?6343942052581175D002t ..2026294344140785724Doo2,
l-.217624g66a603070326D002'-.2326204a426o537a820D002'
* -.24761042850013399850002r -.26254300552690594930002'
* ! .27720979241 64600240DOO2/
DATA(05(I)' l=1,19) /* -.6770833333333333322D000, -.220291479A206278015D001'

t -.3712590308g61503947D001, -.5218010289498877822OOO1'
r -. 6721592615807936.| 73DOOl , - .a2241 86533352991 8370001 I

* -.97261769556783931290001I -.11227766e67105/8781|J002'
* -. 1272907520499096141D002, -.1423017624A921136010002,
:l_.1573111965670700007D0021-.17231939a2o272207o2ooo2|
t i.1873266140557309258D002r -.20233302328193519550002'
* -,21733a74g4l4aga2g1oDoo2t -.2323435992394561375D002'
* -.2423404635b9537444OD002, -.2622252A77Oe80355710002'
!i -.275a6A6258346552664DO02/

DATA (ZMLAs(I), I=1,17) / 1.E9,715',207', 103-'.47" 36'4' 27"
* 22.6, f e.S, re.e , 14.7, 14., 12.9, 12-2, 11.5' 10.A, 9.2 /

DATA LA2 , LA5 /36,'t7 /
DATA (ZMLA2(I)'I=1'40') /

1 2. 694430l D- i 2, 4, 7 34A244D-6, 7 . 08037 1 3D-4' 9. 6398932 0-3'
24.g27 14g4D-2, I .5267301 D-l ,3. 5324772O-1 ,6.7835277D-1 )

31 .'t 47521 sDO, 1 . 77 31 14.t DO, 2 . 56 i 7749D0, 3. 9957 1 8 t D0,5 . 215932700,
46, 60207 o2Do, 8. l 490972D0, 9. 85 l 4 1 1 2Do, 1 . 2320 40501' 1 . 49.1 7 923D1,
51 . 71 63634D1, 1 . 9540309D1,2 . 303024601,2.644684401,2.929282001'
69. 35497 440.t, 3 . 7541 24601, 4. 0802980D1, 4. 5784933O1'5. 0287 1 3301'
75.391 71 66D1 ,5.9582285D1 ,6.4537858D1 ,7 .070137'701 ,7 .597847201 |
88.0163399D1,8.69457660t,9.259425501,9.983446D1'
91 .057513302, 1 . 1039828D2,1 . 18201 6902/
DATA Cl / o.57735 02691 8962s7600 /
DATA C2 / 0.66666 666666666666D0 /
DATA C3 / 0.86602 540378443864D0 /
DATA Pt / s. I 41 5926535897932400 /
DATA FPr12 / 1.30899693899574718D0/
DATA CON4 / .7071067811865475244DO/
A0 = 9.30436716929229427D-01
B0 = 6 .7A29A725144275A71D-01
C0 = 4.65218358464614714D-01
D0 = 5. 7A298725144275871D-01( = 0.85366721883895156D0
ZMSQ = ZR*ZR +zl*zl
RZR = ZR
TEMP = ZI
IF (TEMP .LT. 0.) TEMP = -TEMP
IF (RZR .LE. 0.) GO TO 51
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171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
't 94
195
r96
197
t98
199
200
201
202
203
204
205
206
207
208
209
210
21 1

212
213
214
215
216
217
21A
219
220
221
222
223
224
225
226
227

IF (RZR .cT. 4.4) GO TO.t20
TEMI = 7. - ,2632 * RZR**2IF (TEMP .cT. TEM1 ) cO TO 120co To 5351 IF (RZR .LT. -9. ) c0 TO 120TEM1=4.4+.1375*RZR
IF (TEMP .cT. TEMI ) GO TO 12053 FLPS = 1

STOREI = ZR*ZR-ZI+ZI
STORE2 = 2,*ZR*ZI
XR = STOREl*ZR -SToRE2*zIXI = STOREl*ZI +STORE2*ZR
DO 55 MLS=1 , LA2
IF (ZMSQ - ZMLA2(MLS)) 62,62,5555 CONTINUE

62 FR=AO
FI = 0.0
XPR(1) = XR
XPI(1) = XI
DO 65 M = l,MLS
FR=FR+A(il|)*.\PR{M)
FI=FI+A(t{)*yp11tvt ;
XPR(M+1 ) =XR*XPR(M)-XI*1P1 1P;
XPI (M+1 ) =xI*XpR(M)+XR*xpI (M)65 CONTINUE
GR= B0
GI=0.0
DO 72 I\l = t,MLS
GR=GR+B(M)*XPR(M)
GI=GI+u(M)+XPI(M)

72 CONIINUE
X =ZR*GR-ZI*GI
GI=ZR*GI+ZI*GR
GR=X
SR=-C1*(GI-FI-FI)
SI=C1*(GR-FR-FR)
H2R=GR-SR
H2I=GI-SI
GO TO 31712O FLPS = 0
ZM = DSQRT(ZMSQ)
ZRT2M = DSQRT(ZM)
IF (ZR .LT. 0.00) c0 To 125
ZRT2R = DSQRT (O.5DO * (ZR + ZM))ZRr2l = zr / (ZRT2R + ZRT2R)
Z32R = ZR*ZRT2R - Zl*ZRfzIz32l = zR*zRT2l + ZI*ZRT2R
GO T0 130125 ZRT2I = DSQRT (0.5D0 + (ZM - ZR))IF (Zl .LT. 0.00) ZRT2I = -ZRT2I
ZRT2R = ZI / (ZRT2I + ZRT2I)
Z32R = ZR*ZRT2R - ZI*ZRT2Iz32l = zR*zRr2I + ZI*ZRT2R
ZMI R = DABS( Z32I )IF (ZMlR .LT. TLrM) cO TO 130R=(TLIM/zMlR)
Z32R=232R*R
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224
229
230
231
232
233
234
235
236
237
238
239
240
24',|
242
243
244
245
246
247
244
249
250
251
252
253
254
255
256
257
25e
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
27A
279
280
2A1
2A2
283
244

t05

210

220

130

280 tF (zr) 290'310'310
290 FLQUAD = 1

3OO H2R - H22R
H2l = H22l

R = DCBRT(R)
ZRT2R=ZR[2R*R
ZRT2I=ZRT2I*R
ZRT2M=ZRT2M*R
Q=R*R
ZM=ZM*R
ZMSQ = ZM**2
zR=zR*Rzl=zI*Rinran-= DSoRT (o.soo * (z!l?! + zRT2m))
zriici = o.SDo * zRt2t / ZRT4R
ZRTM4R = ZRrAR/ZRT2M
ZRTM4I ='ZRt4l/lRl2Mir (zn .cr. o.) Go To 210
ii iTrvrrR .LT. TLiM) Go ro 210
ABK = ABS(K2)'ir <zs2r .or. o.) co ro 205
K1=K*EXPONT
K2=K/EXPONT
Z32l = -TLIM
G0 TO 220
K2=K*FXPONT
Kl=K/EXPONT
l!!t = TLIM
GO TO 220
K2=C2*2321
52 = DEXP(K2)
K2 = K*S2
Kl = K/52
THR=FPI12-C2*232R
STHR =DSIN(THR)
CTHR =DCOS(THR)
STP = -C3*CTHR +0'5*STHR
CTP = -C *STHR -O.5*CTHR
TEMP = DABS (232R)
TEMI = DABS (232I)
iF trervrp .LT. TEMl) TEMP = TEM'l
DO 235 tYl! = 1'LA5
iF tiiNp .cr. zt'tlas(ML) ) c0 To 2s0
CONT I NUE
CONT INUE
YR = Z32Iyl = -232R
iarr- cin-iyR' YI, F2R, F2l, c4, c5f ML)
CPR = F2R
gp1 = F2I
ii6nee=Kz* ( zRTM4R* F2R-ZRTM4I *F2! )
;ioriE;= it- iznrrtra I * F2R+zRrM4R* F2l )
izin =sronE3*crHR-sroREA*srHRirzii =SronE3*STHR+STORE4*CTHRlF (zR) 280,270t270
FLQUAD =0
GO TO 300

230

235
250

270
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285
286
287
28A
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
3rt
312
313
314
315
316
317
318
319
320
321
322
323
324
32,5
326
327
328
329
330
331
332
333
334
33s
336
337
33u
:Jsg
340
34r

co T0 3175in FLQeiAU = -r
YR = -232IYI = Z32R
CALL CFR (YR, YI, F1 R, F1 I, C4, C5, ML)CPR = FlR
CPI = FII
STORES=K1 + (ZRTM4R*Ft R-ZRTM4I*F1 I )STORE6=K 1 * (ZRTM4R* FI I+ZRTM4I*F1 Ri
H2 1 R=ST0RE5*CTP-STORE6*STp
H2 1 I =STORE5*STP+SToRE6*cTP
H2R=H21 R+H22R
H2l--H21 L+H22tIF (rH .EQ. 2)GO TO 80IF (FLPS .NE. 1) cO TO 320HlR = GR+SRH1I = GI+SI
GO TO 362IF (FLQUAD .LT. O)GO TO 340
YR = -2321YI = Z32R

c5, ML)

317
60
70

320
330

CALL CFR (YR, YI, F1R, F1I, C4,340 STORET=K1*(ZRTM4R*F1R-ZRTM4I*F1 I
SToRES=K 1 * ( zRTM4I * F1 R+ZRTM4R*F1 I
H 1 1 R=SToRET*cTHR+SToRES*sTHR
H1 1 I =STORET* ( -STHR ) +STOREB*CTHR

. IF (FLQUAD .LE. O) GO TO 360350 STOREg=K2*(ZRTM4R*F2R-ZRTM4Ir.F2I
STOR.I O=K2* ( zRTM4 I * F2R+ZRTM4R*F2 IH12R = STOREg+CTp+STORlO*STp
H.I 2I = STOREg* (-SIP)+STORl O*CTPHIR = H11R+Hi2RH1I = H11I+Ht2Ico To 362360 HIR = H11R
HII = HtlI362 IF (rH .EQ. 1)co ro 99980 IF (FLPS .NE. 1) cO TO 38090 FPR = COFPI = 0.0
DO 92 M = 1,MLS
FpR=FpR+C(M) *XpR(M)92 FPI=FPI+c(M)*XPI(Mi
X =-(STOREt*FpR-STOREZT.FpI)
FP I =-( STORE I * FpI+STORE2r,Fpn j
FPR=X
GPR = D0
GPI = 0.0
DO94M=1,MLS

- GPR=GPR+D(M) *XPR(M )94 GPI=GPI+D(M)*XPI(M)
SPR=-Cl * ( cpI-FpI-FpI )
SP I =C.I * ( GPR-FPR.FPR )
H2 PR=Gp R-SpR
H2PI=GpI-SpI
Go To 414380 YR = Z32l

70



342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
37 1

372
373
374
375
376
377
37A
379
380
381
342
383
384
385
386

390
400

Yl = -232R
CALL CFK (YR, YI, G2R, C2I' D4I D5'
STOR11 = K2*(ZRT4RrQ2R-ZRT4lrG2I)
SToRl2 = K2*(ZRT4R*G2I+ZRT4I*G2R)
H22PR=STOR1 1 * STHR+STORI 2*CTHR
H22PI=STOR1 1 * (-CTHR ) +STOR12*STHR
IF (FLQUAD .LT. 0) GO TO 410
H2PR = H22PR
H2Pl = H22Pl
GO TO 4l4
YR = -2321
Yl = Z32R
CALL CFR (YR, YI, GlR, G1 I, D4' D5'
STORl3 = K1*(ZRT4R*GlR-ZRT4l*Gl I)
STOR14 = K1*(ZRT4R*G1 I+ZRT4I*GlR)
H21 pR=STOR1 3* (-sTP ) -sToR14*CTP
H2t pI=ST0R14* (-STP ) +SToR13*CTP
H2PR = H2lPR+H22PR
H2PI = E21PI+H22PI

414 IF (rH .EQ. 2) Go TO 999
100 IF (FLPS .t'lE. 1) GO TO 420
t10 HlPR = GPR+SPR

H1 PI = GPI+SPI
GO TO 999

42O IF (FLQUAD .LT. 0) Go ro 440
430 YR = -2321

YI = Z32R

ML)

ML)

CALL CFR (YR, YI, G1R, G1I, 04, D5, ML)
STOR15 = K1*(ZRT4R*G1R -ZRT4I*Gl I)
STOR16 = K1*(7p14p*GlI +ZRT4I*GlR)
Hi 1PR = STOR15*STHR -ST0R16*CTHR
H.I 1PI = STOR15*CTHR +STOR16*STHR
lF (FLQUAD .GT. O) GO TO 470
HIPR = H11PR
HlPI = H1lPI
GO TO 999

410

450
460

440

470 STORI 7 = K2* ( ZRT4R*G2R -ZRT4I'|G2I )
sToR18 = K2*(ZRT4R*G2I +ZRT4I*G2R)
Hl2PR = SToRl7*1-STP) +STOR18*CTP
Hl2PI = STOR17*(-CTP) -STOR18'+STP
H1 PR = H1 2PR+H1 I PR
H1 PI = H1 2PI+H1 1 PI

999 CONTINUE
RETURN
END

CPRT.S J.CFR
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10

1

2
3
4
5
6
7I
9

10
11
12
13
14
15
r6

SUBROUTINE CFR(X, Y, SR, St, A, B, M)IMPLICIT DOUELE PRECISION (A-H,O.Z)
DrlrENSroN A(1), B(1)
SR = Q.99
SI = 0.D0
DO 10 rJ = 1,MI=M-J+1
TEMR = X + SR + B(I)
TEMI = Y + SI
TEMP= A(I) / (TEMR{,*2+TEMI**2)
SR=TEMR*TEMP
SI=-TEMI*TEMP
CONT I NU E
SR = SR + 1.00
R ETURN
ENO
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1 SUBROUTINE HZERO(PARTR,PARTI)
2 IMPLICIT DOUBLE PRECISION(A-H.O-Z)
3 DOUBLE PRECISION PARTI, PARTR, K2] TNZ12
4 COMMON /AHZERO/ HZEROR,HZEROI
5 D2 = PARTR**2 + PARTI**2
6 I K2 = .7978845608*EXP(PARTI )7 O = SQRT(D2)
8 RLZ|2 = (saRT( (PARTR + .D)/2.')l/O9 IF(D - PARTR) 9,9, l0

10 9IMZI2=O
lt GO TO 11
12 1o IMzl2 = (SQRT((D - PARTR)/2.))/D
13 11 COST = COS(PARTR)
14 SINT =-SIN(PARTR)15 HZEROR = K2*(RLZ12*COST - IMZI2*SINT)
t6 HZEROI = K2*(IMZI2'TCOST + RLZI2*SINT)
17 RETURN
18 END
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APPENDIX B: SAMPLE RUN

This appendix gives a brief discussion of the input-output, then lists an input deck
and shows the resulting output. The input deck is really three separate runs that are stacked
to run consecutively. The input to a single run consists of several parts given in table B l.
The table gives the number of cards and the location of the FORTRAN input statements in
Program MAIN. The last three of these are open-ended. That is, more modes, receiver
depths, or ranges are read in until a blank card specifies the end of the list. A blank range
card sends the program back to the beginning. A negative range sends the program back to
read a new source and new receivers after reading another key card. The program halts
when a blank "n and freq" card is encountered.

Table 82 gives most of the functions of the key card by which integers are read into
control keys I -9. Some of these will require additional information, which is read in imme-
diately following the key card.

The output of the program is usually printed through FORTRAN print statements.
Cards are also punched when key 5 is l0 or key 8 is 2, 3,or 4. In the first case each card
contains a complete eigenvalue that can be read into future runs.

When key 8 = 2, propagation losses for 25 consecutive ranges per card are punched
for each receiver depth, with a maximum of 5 receiver depths. The losses can be read into a
plot program with a format of (5X,25F3.1). Each loss must then be subtracted from 140.
This format allows losses to tenths of a dB from 40.1 to 140.0 dB.

When key 8 is 3,losses forup to 26 receiver depths are punched on one card for
each range. These cards can be used in a contour plotting program. They can be read with a
format of (26F3.1) and must also be subtracted from 140.

Input

Control keys

n and freq

Profile

Modes

Source and receivers

Ranges

Selects options

Determines number of layers and fre-
quency; also halts program

Specifies depths, sound speeds, gradients,
attenuations, and densities

Searches for or specifies modes

Specifies a source depth and one or
more receiver depths

Specifies a sequence ofranges; also
directs continuation

Number of Cards

I or more

1

7

I or more

2 or more

I or more

Location
in Program

MAIN

37-6s

66

7 1-85

224

46t463

616

Table B 1. Input cards to the normal mode program.
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Table 82. Functions of the control keys.

0
I

Setting

0
I
k>r
k>0
0
I
k+ 10

Effect

No output
Print
Plot on printer

Print losses
Contour on printer

No output
Print all interfaces
Print interface k

Change levels and symbols

Sum only those given
Add to existing sum
Punch modes on cards

Long print
Short print
Shortest print

Phased addition
Random-phase addition

Change T-lim
Punch losses for up to 5

receivers
Punch losses for up to 26

receivers

Function Affected

Depth functions

Propagation losses

Reflection coefficients

Contour on printer

Number of modes

Steps in mode iteration

Mode sum

0
I
2

0
I

I
2

0
k

No effect
Use only

Loss plot input

Contour plot input

Number of modes
k modes

The first profile in the input-output is a surface duct, 100 m deep. For the 500 Hz
frequency, 3 modes are found by searching from a phase velocity of 1520.5-1523 mis. Two
additional modes are found by extrapolation. Forty receiver depths are then specified from
3 to 120 m, and propagation loss contours are drawn for a source at a depth of 20 m. The
modes are added in random phase, and loss contours of 80, 90, and 100 dB are requested to
be represented by the symbols 8,9, and 0. A negative range then causes the program to read
new control keys, source and receivers. The depth functions are then printed out as ampli-
tudes and phase angles and propagation losses are computed.

The second profile consists of two negative gradients over two layers of sediments in
shallow water. A velocity discontinuity exists at the top of each sediment layer. Negative
numbers in the input for the attenuation at the bottom of the sediment layers serve as flags
to request that the gradients at the top of the layers have no imaginary parts and that the
attenuation at the bottom will be whatever results from this. The change in ImC from 37 .9
to 23.7 in the deeper sediment layer indicates that the attenuation changed by about 60
percent through the layer.
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A final layer of negative sound speed gradient must always be added. A gradient of
-0.1 is chosen here for the top of this layer.

The first three modes are determined by reading in approximate values. The magni-
tudes of the depth functions are plotted on a log scale at 2-m depths from 30 to 80 m.
Reflection coefficients are computed at interface 2, which is the water-sediment interface.

The final profile is a deep-water profile with a 40-m deep sediment layer. The atten-

uation increases from 2 dB/km to 2,5 dB/km through this layer. The first mode, the first
bottom-reflected mode, and a higher bottom-reflected mode are found' Each step of the
mode iteration is printed out. Reflection coefficients are again computed. The amplitudes
and phase of the depth functions are printed out at 500-m depth and at each even I 000-m
depth for a 100-m source dePth-

On the last two profiles, a much larger set of modes is required to compute correct
propagation losses.

The sample run given here required 6 seconds on a UNIVAC 1l10, Exec 8 operating
system. The cost of the run was $ I .20.

76



NORMAL*MODE(O).INPUTi INPUT DECK STARTS AT LINE 3, ENDS AT LINE 65.2 123456789 123456789 123456789 123456789 1234567A9 123456789 123455789 1234567893tlt124 1 00. 90 . 80. -1 000.506 0987 2 500.I 100.9 1 520.10 011 .O17 -.112013 0't4 015 -1520.5 1523. 3016 -1. 217018 10.19 3. 120. 3.20021 4000. 1 00000. 4000.22 -1.23|24 10.25 30. 120. 30.26027 5000. I 00000. 50002802922130 5 1 500.31 0. 51. 73. 73.3 373.332 1542.2 1536.8 1606.45 1684.33 1523.4234 1.5 1.5 -.135 ,12 .73 .7336 -1. -1.37 1.68 r.91 1.9138 1527.1 I .1 639 1530.64 .1340 I 533.49 .1 141 042 60.43 30. 80. 2.44045046 1647 I 100.4A 55. 146. 402. 960. 22A6. 4390. 4430.49 I 544.9 r s42.6 1 51 7 .9 r 495. 0 't 483.2 149? .A 1541 ,750 1 533.451 1. -.152 .02 .02s53 .02554 1.54 2.555 -r 483.5 I 484.5 I 056 -1533.4 .1 1534.4 10
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57 -1 600 2 1602. I 0
58059 1 00.60 500.61 1 ooo. 5ooo. 1 000.
620630640
33 ?r.ouurr, 1234s6?Be 1234s67ss 1234s6.-ss 1234s6zge 1234s67as i234s6789 1234s6?89
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APPENDIX C: HANKEL FUNCTION PARAMETERS

This appendix gives the FORTRAN statements for two programs associated with the
modified Hankel functions. Program PWRTRN computes the power series coefficients, d6,
from eq (57), then determines the truncation points from eq (59). The truncation points
for the other three sets of coefficients can be determined by changing line 9. Different com-
puter word lengths can be accommodated by changing line 16.

The second progfilm, CFC, determines the asymptotic series coefficients C- from
eq(72), then determines the continued fraction coefficients as indicated by eq (Sl)-(83).
The second set of coefficients can be determined by changinethe 4 in line I 1 to a 16.
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50

60

30

20

40
t0

I
2
3
4
5
6
7I
9

10
1t
12
13
t4
15
16
17
18
19
20
21
22
23
24
25
26
27
2A
29
30
31
32
33

PROGRAM PWRTRN
riii-pnocnAM DETERMTNs TRUNcATIoN PoINTS FoR

rurpr-rcrr DouBLE PRECISION(A-H'O-Z)
DIMENSION D(50), ALOGD(50)
D(1) = 1.
ALOGD(1) = 0'
P=3.
DO50I=2'50
D(I)=D(I-1)/P/(P-2)
P = P + 3.
IF (D(I) .LE o.) GO TO 50
ALOGD.I ) - ALOG1O(D(I))
CONT INUE
PRINT 60, D, ALOGD
F0RMAT (10E12.6)
DH = 18.
M=1
DOt0K=2,50
P=M-Ki = (rr-oCo(x) - AtoGD(M) + DH) / 3' / P

IF (P .Gr. -1.1) Go To 20
A = ALoGD(M) - ALOGD(M+I) - 3' * Z
IF (A .Gr. o.) GO TO 20
[f,=M+1
GO TO 30
L=K-1
MM=M-1
AZ = EXP (z * 2.3025851)
AZSQ=77*AZ
PRINT 40, L, MM, Z, AZ, AZSQ
FORMAT (2I5, 4E15.8)
CONTINUE
END

THE POtdER SERIES.cr*
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Cr*
C*+

1

2
3
4
5
6
7I
9

10
1t
12
13
14
15
16
17
18
't9
20
21
22
23
24
25
26
27
2A
29
30
3t
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
5'l
52
53
54
55
56

PROGRAM CFC
THIS PROGRAM COMPUTES A SET OF SERIES COEFFICIENTS AND THEN
COMPUTES THE CORRESPONDING CONTINUED FRACTION COEFFICIENTS.

IMpLICIT DOUBLE pRECISION(A-H,0-Z)
DIMENSION CoEF(21,23,3), CHECK(20), C(82), S(10), A(20), B(20)
C(1) = 1.
BOTTOM = 1.
TOP = 1.
D0 2 I = '1 ,45X:48*I
Y = 9 * (I + I - 1)**2 - 4
C(I+1)=C(I)*Y/X

2 CONTINUE
PRINT 20, (C(I), I - 1,40)

20 FoRMAT ( sc20.9)
rr FoRMAT (/)

DO 100 I = 1,11
COEF( I, I,3) = 0.
coEF( I, I+1 ,3) = 0.
COEF( I, I+2,3) = 0.

IOO CONIINUE
A(1) = C(2)
COEF(2 '2,3) = 1.
DO140I=3,21
O0 110 ,J = 2,I
COEF(I,rJ,1 ) = COEF(I-t,\r'3)
COEF(I ,J,2) = COEF( I-2'J'3)
COEF(I,,J,3) = COEF( I-f iJ-l '3)IlO CONTINUE
IF (r .EQ. 3) GO TO 150
CON = 9.
AT = 0.
BT : 0.
K= I-3
D0 120 rJ = 3,IK=K+'l
CoN = c(K) * CoEF( I,J-1,3) + CON
AT = c(K) ,+ CoEF(I ,J-l ,2) + AT
BT = C(K) * COEF(IrJ-1,1) + BT120 CONTINUE
PRINT 160, CON, AT, BT
CHECK( I-2) = BT
A(I-2) = -(coN + C(K+l)) / AI

1 50 CONTINUE
CCN = 0.
AT = 0.
BT = 0.
K=I-2
D0 130 .J = 3,IK=K+1
CoN = C(K) * CoEF( I,J-1,3) + CON
AT : g(K) i COEF(I,'J-1 r2) + AT
BT = 6(K) + CoEF(I,J-1,1) + BT130 CONTINUE
PRINT 160, CON, ATr BT
PRINT 1 1
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57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

B(I-2) = -(CON + A(I-2) * AT
D0 140 rJ = 2'I
COEF(I,,J,3) = COEF(I'J'3) +

r, coEF(I,J,1)
I40 CONTINUE

PRINT 20, A, B' CHECK
160 FORMAT (sG20.9)

R=-2
rJ=0
DO30M=1,18'3j=rJ+3
K=K+3
PUNCn 2OO, (A(I), I - K' Jl
PUNCH 2OO, (B(I)' t I l(' rJ)

30 CONTINUEioo ioiuli (sx, lH*,3(E21.15,1H, ))
END

+ c(K+l l) / 8r
A(I-2) * COEF(t,,J'2) + B(I-2)
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APPENDIX D: MODE FOLIJOWER PROGRAM'IN FORTRAN

The FORTRAN statements of the Mode Follower program are given here. This is
the main body of the program. The following auxiliary subroutines from appendix A are
required: SETUP, DET, HANKEL, and CFR.
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1 PROGRAM MFOLLO
2 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
3 COIilMON /tNpur/ Z(10),fi,oMEGA,V,VI,GCU(10),GSQ(10),CAY(10),LAMBDA,L
4 IAMBDI,G(10),RHO(10),GI(10),GSQI(10),CAYI(10)
5 CO|IIMON ,/DETMNT/ A(21 ,4),Q(21,4)6 REAL INCA, INCB, INCC, INCD, INCE, LAMBDA, LAMBDI
7 DIMENSIDN T(4), PV(4), W(8), WI(8), CB(10), CBI(10), C( 10),
I 1 CAy SQ(rO), GAMr/lA(10), DPK(10), GCUI(10), CI(10), CR(10),PVI(4)
I 2, CAYSQI(10), SR(4), SI(4)

10 CHNG = 1. / e192.
11 CH|IGI = 0.
12 4 CONTINUE
13 C;; IiO - TCiAL STEF LiillIT, K1 , K2 FRINT KEYS, K3 = i nEEPS SnME rxurir.c
14 C** FOR NEXT RUN.
15 READ 10, KO, Kl, K2, K6, K3, TLIM, BLIM, RATIO, EX
16 PRINT 1O,KO, K1, K2, K6, K3, TLIM, BLIM, RATIO, EX
17 10 FORMAT (5I4, 4Et0.1)
tB IF (TLIM .Eq. 0.) TLIM = 1.E-5
19 IF (BLIM .EQ. 0. ) BLIM = 1.E-2
2Q IF (EX.EQ.0.) EX = 28.
21 RLIM = 10.**EX
22 IF (RATIO .EQ. 0.) RATIO = 2.
23 IF (K0 .EQ. 0) K0 = 300
24 IF (K3 .NE. 0) GO T0 128
25 30 READ 1240, N,FREQ ,ATTEN26 C** STOP IF N = 0. THIS IS THE ONLY PROGRAMED STOP.
27 IF (N.EQ.O) GO To 1200
2A PRINT 1250, N,FREQ
29 C** PARANIETERS READ IN BELOW ARE THOSE AT THE TOP OF EACH LAYER.
30 C'.* READ IN VELOCITIES.
3l READ 1260, (C(I),I=1,N)
32 PRINT 1280, (C(I),I=1'N)
33 C*f READ IN DEPTHS.
34 READ 1260, (Z(I)'I=1'N)
35 PRINT 1280, (Z(I),I=1,N)
36 C'f* READ IT.I GRADIENTS
37 READ 1260, (GAivlUA(I)'I=1,N)
38 PRINT '! 280' (GAMIVIA(I)'I=1 'N)39 C** READ II.I ATIENUATION FACTOR IN LOSS PER KILOMETER.
40 READ 1260, (DPK(I;'I=l'N)
41 PRINT 1280, (DPK(i)'I=1'N)
42 C** READ II'I DENSITIES (BLANK INPUT IMPLIES SEA l.lATER DENSITY).
43 READ 1260, (RHO(I),I=1,ltl)
44 PRINT 1280, (RHO(I),I:1,N)
45 125 CONT INUE
46 NUMEER = 147 ,JX = 0
48 C*'r NX -- VARIABLEl NY = LAYER NUMBER, NZ = CONTINUITY
49 READ 119, NXt NY, NZ, PK, VALL,DP, V, VI' STEP' STEPI
50 PRINT 21, NX, NY, NZ, PK, VALL,DP, V, VI' STEP, STEPI
51 119 FORMAT (312, 4X, 7010.2)
52 21 FORMAT (10H VARIABLE ,12, 10H LAYER NO I 12t12H CONIINI|lrv
53 *I2,/ 7c15.5)
54 PK=PK-DP
55 C** START NEW CYCLE BY INCREMENTING VARIABLE.
56 107 PK=PK+DP
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57
58
59
60
6l
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
7A
79
80
81
a2
83
84
85
86
a7
88
89
90
9t
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
t09
110
111
112
113

IF (DP) 108,999, t09
C*,i CHECK IF DESIRED LIMIT OF VARIABLE HAS BEEN REACHED.10s IF (PK .LT. VALL) c0 TO 3

G0 TO 133
109 IF (PK .GT. VALL) cO TO 3133 G0 TO (131,101 t1O2,103,104,105),NX131 FREQ = PK

GO TO 106
101 C(NY) = P11

rF (NZ .NE. 0) c0 TO 106134 IF (NY .EQ. N) cO TO 13s
GAMMA(NY) = g.
IF (NY .LT. 2) GO TO 106

135 GAMMA(NY-1) = 0.
G0 T0 106102 z(Nv1 = P6
IF (NZ.EQ.1) c0 TO 106rF (NY .LT. N) Go rO 134IF (NUMBER .EQ. 1) cO TO 106
c(NY) = o.
G0 T0 106103 GAMMA(NY) = P1
rF (NZ .NE.0) GO TO 106rJ=NY+1
DO 121 I = rJ,N
C(I) = 6.121 CONTINUE

104 DPK(NY) = PK
GO TO 106105 RHo(NY) = PK

1 06 CONTINUE

C** CO;,iFLE]E ;ROFI LE **
DO 100 I=l,NC** SET UNSPECIFIED DENSITIES TO 1.02 (sEA WATER).rF (RHo(r).NE.0.) co r0 40

RHo(I)=1.02
40
c**

IF (r.EQ.1) cO rO 50
CONIPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER.

TEMP=CI(I-1){.*2
TEMDR=C(I-t;**2
TEIIDI = ( TEMDR+TElvlDR+TEMDR-TEMP ) *CI ( I-1 )
TEMDR= ( TEMDR-TEtnP-TEMP-TEMP) *C( I-j )
rEMp= ( GAMMA ( r-1 ) +GAMMA( r-1 ) ) * ( z( r )-Z( r-1 ) )-C( I-1 )
TEMDEN=TEMP**2+CI ( I-t )* +2
TEMl = ( TEMDI *CI ( I -1 )-TEilIDR*TEMP ),/TEMOEN
TEMl I = (-TEMDI*TEMP-TEMDR*CI ( I-1 ) )/TEMDEN

CB( I ) =5qp1 ( .5* ( TEMl +SQRT( TEMl **2+TEMl I**2) ) )cBI ( I ) =fEMlIi (CB( I )+CB( I ) )50 rF (c(r).NE.o) co ro 60
Ci.'. IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYERc(I)=6s111
60 IF (DPK(r).N8.0.) CO TO 70

Cl(I)=0.
co To 80c** IF ATTENUATIoN Is To BE AppLIED To A LAvER, coMpurE coMpLEx vELocITyC** KEEP ABSOLUTE C EQUAL TO GIVEN REAL C FOR SIMPLICITY.
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14
15
16
17

118
119
120
121
122
123
121
125
126
127
12A
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
'151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

70 TEMP=54576f. *FREQ
TEMDr=DPK(I)*C(I)
TEMDR=TEMP* *2+TEM0I **2
CI ( I ) =TEMDI *TEMP*C( I ) /TEMDR
C( I )=TEMP*'*2*C ( I ) /TEMDR

Bo ti tcnNNn(I)'NE.o.) Gc rD loo
IF (1.EQ'N) GO TO 90

C** COMPUTE GRADIENT IF NOT GIVEN._
GAMMA( I )=(c( I+1 ; **2-g(I )**21*C(I )/(2'*c( I+1 )**2*(z( I+1 )-z(I ) ) )
IF (l.EQ.N) GO To 90
GO TO 100g** REDUCE LAYERS BY ONE IF FINAL POINT ONLY DEFINES GRADIENT IN LAST LAYER'

90 N=N-1
1 OO CONTINUE

C** COMPUTE USEFULL QUANTIES {'*
OMEGA=6.2831 85307 t' FREQ
DO 120 l=1 'NTEMP=C( I ) +*2+CI ( I ) **2

cAY ( I ) =OIVIEGA*c( I ) /TEMP
cAYI ( I ) =-oMEGA+c I ( I )/TErIP.
CAYSQ( I )=cAY( I,1 **2-g6YI ( I )**2

CAYSQI (l ) =2.*CAY( i ) *cAYI ( I )
TEMDR=-2.,t.GAMIIA( I ) *CAYSQ( I )

TEMDI=-2. +GAMI\4A( I ) *CAYSQI ( I )
GcU( I ) = (TEulDR*C( I )+TEMDI *CI ( I ) )/TEMP
GCUi ( I ) = (TEMDI*C ( I )-TEMDR*CI ( I ) )/TEMP

rEMP=EXP(ALoG(Gcu( i )i*2+ccuI ( I)**2)/9: l. . .-
GI ( I ) =rEMP.iirl t nrnr'ri (GCUI ( I ), ABS (GCU( I ) ) )/3' )

C( i )=sQnr ( TEMP**2-GI ( I ) **2 ;'ti (cnNrrtn(I).LT.o.) Go ro 110
G(I1=-6111

110 GI(I)=-GI(I) r, 'A ^Ar.^.^.,.,'-il::::=::-::^-c** y.t,t L.^, L:..,'::'iinslrcn pARAt\lETER USED ONLY TO CCI'iPAna';:;i-i o;iiER i'ic-.
xMI=-GI ( I ) * (z( I+1 )-z( I) )
xM=-G( I )*(z( I+1 )-z( I ) )
GSQI( I )=2. *G( I )*GI( I)

120 GSQ(I)=G(I)+*2-GI(I)**2
IF (.JX .GT. o) GO TO 113- -...C** GO TO INITIAL. STEPS OR TO THE STANDARD STEP.
I F ( NUI/IBER - 4) 71 | 111 1122

71 CALL SETUP
CALL DETNT(N,DET,DETI)

VEL=DET
VELI=DETI
DELTA= STEP
DELTI=5TEPI
IF(DELTA.NE'0. )Go To 250
I F(DELrI. EQ' O' )DELTA='01

25O SIZE2=100.
iF (l(6.ii.sl PRiNT 1320, V'VI,DET,DETI'A(21'4)'Q(21'4)

C** ITERATE FOR MODE UP T0 7 STEPS'
D0 310 J=1,i2

V=V +DE LT A
VI=VI+DELTI

C** DO NOT PERIilI;-iMNCTUANV PART TO BECOME NEGATIVE'
tF (vI) 260'270t28O
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171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
r86
187
188
189
190
191
192
193
194
'I 95
19c
197
'I 98
199
200
201
202
203
204
205
206
207
20a
209
210
21 1

212
213
214
215
2't6
217
218
219
220
221
222
223
224
225
226
227

260 DELTI=DELTI-VI
27O VI=1 . E-1 I
C** SET UP DETERMINANT FoR PHASE vELocITY v + vI280 CALL SETUP

CALL DETNT (N,DET,DETI)
IF (K6.NE.1 ) cO T0 300

PRINT 1330, V, VI, OET, DETI, SLR, SLI300 TEMNR = DELTA
TEMNI = DELTI

TEM0R=VE L-DET
TEMDI=VELI-DETI

TEMDEN= T EMDR* T EMDR+T EMDI *T EMDIrF ( TEMDEN. EQ. 0. ) cO TO 320
T [i,,i;i;iU -; iIIiNR + T EMDR+TEMN I *T EMD I
TEM I NU=T EMN I *T EMDR-TEMNR*T EMDI

SLR=TEMRNU/TEMDEN
SLI=TEMINU/TEMDEN

. IF (,J .GT. 3) c0 TO 125
SR(4-NUMBER) = SLR
SI(4-NUMBER) = SLI125 DELTA = DET t SLR - DETI + SLt
DELTI = DET * SLI + DETI * SLR

SIZE=DELTA*DELTA+DELT I *DELT I
C*{.DISCONTINUE ITERATION AFTER 2ND STEPC** PREVIOUS STEP.

IF CORRECTION STEP IS MORE THAN

rF ((srzE.cr.srzE2).AND.(J.cT.2)) GO T0 320
SIZE2=SI7E*2.
VEL=DET
vELI=DETI

310 CONTINUE
320 CONTINUE51 Pv(4-NUMBER) = V

PVI (4-NUMBER) = Y1
NUI\lDER=iiUl.ilBER+1
GO TO 107C** START STANDARD STEP, EXTRAPOLATE PHASE VELOCITY AND SLOPE.

1'l 1 INCA = DP
INCB = DP
INCC = DP122 INCD = -INCB - INCCT(1)=INCB*INCD
T(2)=INCB*INCC
T(3)=INCD*INcc
DO 112 IS = 1,3
w(IS+4) = -SR(IS) / r(IS)
wI(IS + 4) = -SI(Is) / T(Is)w(Is) = -Pv(IS) / T(Is)112 tljr(rs) = -PVr(rs) / T(rs)113 INCD = INCA + INCB
INCE =INCD+INCCT(1)=INCD*1199
T(2)=INCA*INCE
T(3) = INCA ,f INCD
SLOP = 0.
SL0PI = 0.
SUM = 0.
SUMI = 0.
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22A
229
230
231
232
233
234
235
236
237
23e
232
240
241
242
243
244
245
246
247
24A
249
250
251
252
253
254
255
256
257
258
252
260
261
262
263
264
265
266
267
268
269
270
27 1

272
273
274
275
276
27'l
275
279
280
281
282
283
284

OO 114 IS = 'l '3SLOP = SLOP + W(I5 + 4) * T(iS)
SLOPI = SLOPI + WI(IS+4) * T(IS)
sUM = SUM + w( IS) '+ T( IS)

114 SUMI = SUMI + |{I(IS) * T(IS)
y=SUM
VI = SUI!1I
CALL SETUP
CALL DETNT (N,DET'DETI)

C** EVALUATE DETERIVi iITIUi ET THE EXTRAPOLATED POINT '
VEL = DET
VELI = DETI

C,T,i ITERATE FOR THE ROOT USING EXTRAPOLATED SLOPE.
DELTA = DET * SLOP - DETI '+ SLOPI
DELTI = DET * SLOPI + DETI * SLOP
IF (Kl .EQ. r l-FnrHr tsso' v, vI' DET', DETI' OELTA' DELTI
V=V+DELTA
VI=VI+DELTI
IF (vl 'GE. o.) GO T0 124
DELTI=DELTI-VI
CHNGI=CHNGI-VI
VI = 0.

C'I,.RE-EVALUATE AT NEW POINT.
124 CALL SETUP

CALL DETNT (N, DET, DETI)
TEMNR = DELTA
TEMNI = DELTI

TEMDP=VE L-DET
TEMDI=VELI-DETI

TEMDEN=T EMDR" T EMDR+T EMDI *TEMDI
IF (TEMDEN 'EQ' O. ) G0 To 123

T EMR NtJ = T El\lNR * T EMDR+T EMN I * T EMD I
i ttri I NU=i EMNI * T EMDR-TEMNR*TEMDI

C** EVALUATE SLOPE (RECIPROCAL ACTUALLY USEO)'
SLR=TEMRNU/TEI1DEN
SLI=TEMINU/TEI\1DEN
DELTA = DET * SLR - DETI * SLI
DELTI = DET * SLI + DETI * SLR
IF (Kl .EQ' T I-FNTNT 1330,-V' VI, OET' DETI' DELTA' DELTI

C** CORREiT PHASE VEI-OC1TY TO BEST VALUE'
V=V+DELTA
VI=VI+DELTI
TEMP = V**2 / (TEMNR**2 + TEMNI**2)

c** r,lAS INcREMENi 'inncE ENouGH To PERMIT EvALUATIoN oF sLoPE'
lF (TE[lP .LT. RLIM) GO T0 123
tr irel,tP .ur. 1.E34) Go Tc 141
SLR = SLOP

C** IF NOT, USE EXTRAPOLATED SLOPE'
SLI = SLOPI
GO T0 141

123 CONTINUE
C*I IF SO, FIND 1 - RATIO OF SLOPES.- TEMDEN = (Sl Rr'*2 * 511*+2)

TEMDR = SLR * SLOP + SLI * SLOPI - TEMDEN
TEMDI = SLR * SLOPI - SLI *.SL0P
TEMP = trerrion'iiZ + TEMDI**2) / tEtlOEH**2
IF (TEMP .GT. TLIM) GO TO 1I6
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285
2A6
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
31C
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
32A
329
33C
331
332
333
334
335
336
337
338
339
340
341

810
3

800
801

C*i. SLOPE RATIo TOo GooD. DoUBLE STEP.141 DP = DP i. RATIOco T0 117116 IF (TEMP .LT. BLrM) GO TO 117
PRINT 13OI PK,V,VI,OETIDETI,SLR,SLI,TEMP,DBLOSS,NUMBER130 FoRMAT (1X,814.6,E16.9,E13.?,6E10.3,I5)

C** SLOPE RATIO TOO POOR. HALVE STEP.IF (NUMBER .LT. 7) co To 126PK=PK-DP
DP:PPlRATIO
INCA = DP
JX=rJX+1
IF (K2.EQ.1) PRINT 118, PK, V, VII DET' DETI

C,T* STOP ON 5 SUCCESSIVE FAI LURES. MODE IS LOST .rF (,JX .LT. s) co To 107
PRINT 810, N, FREQ
FORMAT (I4, c12.5)
DO 801 I = 1,N
PRINT 8OO, C(I), Z(I), GAMMA(I), DPK(I), RHO(I), G(I)
FORMAT (10c12.5)
CONTINUE
GOTO4126 PRINT .t 27 , N, TEMP127 FORMAT (7H NUMBER, 13, 22H FAILED, SLOPE RATIO , Fl0.6)C** UPDATE ALL QUANTITIES FoR NEXT STEP.117 INCC = INCB
INCB = INCA
INCA = PP
PV(3) = PY121PvI(3) = PVI(2)
PV(2) = PY11;PvI(2) = PvI(1)
Pv(1) = v
rrt(i, - vr
r.lX = 0DENOM=v*v+VI*vI
LAMBDI = -OMEGA * vl / DENOM
DB LOSS = -8686. * LAMBDI
SR(3) = 5P12;
SR(2) = 5P11;
SR(1) = 51P
sI (3) = SI (2)
SI(2) = 51111SI(1) = 511
Gv = v**2 / (v - FREQ * (V-pv(2)) / INCB)
PRINT 1 1 8, PK, V,VI, DET,DETI I SLR,SLI, TEMP,DBLOSS,GV,NUMBER

1 18 FORIVIAT (E15.7,Et6.9,E13.2,6E10.3,Fj1.5,I5)
NUMBER=NUMBER+1

C** CHECK ToTAL NUMBER oF STEPS.IF (NUMBER .GT. K0) cO T0 3c0 To 107999 STOP1?50 FoRMAT (I3,8H LAYERS,,F.tO..t,3H HZ)1260 F0Rf\iAT(6E10.4)
1?7O FORMAT (8H ATTEN =,G1O.5,SHDB/KM)1280 FORMAT (SF14.s)
1320 FORMAT (/,6E18.9)
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342 1330 FORMAT (6E18.9)
343 1240 FORMAT( I2'E1O.',l , E10'2)
g44 1290 FoRMAT (zx,6H RE M ,ii,u' IM M ,8x'6H-L/KYo'8x'6H RE c '8X'6H IM c
g4s t ,si,izi ni c BorroM,4x,l2+ IM c BorToM)
346 1 2OO CONTINUE
347 END
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