

Technical Report 393

UNDERWATER SOUND PROPAGATION-LOSS PROGRAM

Computation by normal modes for layered oceans and sediments

DF Gordon

17 May 1979

Final Report for Period 1976 - 1978

Prepared for Naval Sea Systems Command (NSEA 63R-23) Washington DC 20362

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

NAVAL OCEAN SYSTEMS CENTER SAN DIEGO, CALIFORNIA 92152

NAVAL OCEAN SYSTEMS CENTER, SAN DIEGO, CA 92152

AN ACTIVITY OF THE NAVAL MATERIAL COMMAND

RR GAVAZZI, CAPT, USN

Commander

HL BLOOD Technical Director

ADMINISTRATIVE INFORMATION

The computer program described in this report was developed in the course of work sponsored by Naval Sea Systems Command, Sonar Technology Office (NSEA 63R-23), under Problem SF 52-552-602, NOSC work unit 714-SU10. Some elements of this program have been in development since 1965, but the final modifications, to achieve the current capabilities, and the reporting were done from 1976 to 1978. The computer program is derived from an earlier program developed by MA Pedersen. D White did significant parts of the mathematical analysis. This report was approved for publication 17 May 1979.

Released by MR Akers, Head Systems Concepts and Analysis Division Under authority of GU Rogers, Head Ocean Surveillance Systems Department

REPORT D	OCUMENTATION	PAGE	READ INSTRUCTIONS		
	OCOMENTATION	2 COVE ACCESSION NO	BEFORE COMPLETING FORM		
NOSC Technical Report 39	3 (TR 393)	2. GOVT ACCESSION NO.			
UNDERWATER SOUND PROPAGATION-LOSS PROGRAM Computation by normal modes for layered oceans and sediments		 TYPE OF REPORT & PERIOD COVERE Final Report for Period 1976-1978 			
			6. PERFORMING ORG. REPORT NUMBER		
. AUTHOR(s)			8. CONTRACT OR GRANT NUMBER(s)		
DF Gordon					
PERFORMING ORGANIZATIO	N NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK		
Naval Ocean Systems Cente	r		NSEA 06H1		
San Diego CA 92152			SF52-552-602		
			724-SU10		
. CONTROLLING OFFICE NAM	IE AND ADDRESS		17 May 1979		
Naval Sea Systems Comman Washington DC 20362	nd (NSEA 63R-23)		13. NUMBER OF PAGES		
4. MONITORING AGENCY NAME	ADDRESS(if differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)		
			Unclassified		
			15e. DECLASSIFICATION/DOWNGRADING		
· · · · · · · · · · · · · · · · · · ·			SCHEDULE		
5. DISTRIBUTION STATEMENT	(of this Report)		SCHEDULE		
5. DISTRIBUTION STATEMENT Approved for public release	(of this Report) ; distribution unlimite	ed	SCHEDULE		
5. DISTRIBUTION STATEMENT Approved for public release	(of this Report) ; distribution unlimite	ed	SCHEDULE		
5. DISTRIBUTION STATEMENT Approved for public release	(of this Report) ; distribution unlimite	ed	SCHEDULE		
 DISTRIBUTION STATEMENT Approved for public release 7. DISTRIBUTION STATEMENT 	(of this Report) ; distribution unlimite (of the abstract entered	ed in Block 20, if different from	SCHEDULE		
5. DISTRIBUTION STATEMENT Approved for public release 7. DISTRIBUTION STATEMENT	(of this Report) ; distribution unlimit (of the abstract entered	ed in Block 20, if different from	SCHEDULE m Report)		
Approved for public release	(of this Report) ; distribution unlimit (of the abstract entered	ed in Block 20, if different from	SCHEDULE m Report)		
5. DISTRIBUTION STATEMENT Approved for public release 7. DISTRIBUTION STATEMENT	(of this Report) ; distribution unlimite (of the abstract entered	ed In Block 20, if different from	SCHEDULE m Report)		
5. DISTRIBUTION STATEMENT Approved for public release 7. DISTRIBUTION STATEMENT 9. SUPPLEMENTARY NOTES	(of this Report) ; distribution unlimit (of the abstract entered	ed in Block 20, if different from	SCHEDULE m Report)		
5. DISTRIBUTION STATEMENT Approved for public release 7. DISTRIBUTION STATEMENT 8. SUPPLEMENTARY NOTES	(of this Report) ; distribution unlimite (of the abstract entered	ed in Block 20, if different from	SCHEDULE m Report)		
Approved for public release Approved for public release DISTRIBUTION STATEMENT	(of this Report) ; distribution unlimite (of the abstract entered	ed in Block 20, if different from	SCHEDULE m Report)		
 DISTRIBUTION STATEMENT Approved for public release DISTRIBUTION STATEMENT SUPPLEMENTARY NOTES 	(of this Report) ; distribution unlimite (of the abstract entered	ed in Block 20, if different from	SCHEDULE m Report)		
 DISTRIBUTION STATEMENT Approved for public release DISTRIBUTION STATEMENT SUPPLEMENTARY NOTES KEY WORDS (Continue on reve 	(of this Report) ; distribution unlimit (of the abstract entered	ed in Block 20, if different from	SCHEDULE m Report)		
 DISTRIBUTION STATEMENT Approved for public release DISTRIBUTION STATEMENT SUPPLEMENTARY NOTES KEY WORDS (Continue on reve Ducts 	(of this Report) ; distribution unlimite (of the abstract entered orse side if necessary and Computer program	ed in Block 20, if different from nd identify by block number) S	m Report)		
Approved for public release Approved for public release DISTRIBUTION STATEMENT SUPPLEMENTARY NOTES KEY WORDS (Continue on reve Ducts Propagation	(of this Report) ; distribution unlimit (of the abstract entered (of the if necessary and Computer program Numerical analysis	ed in Block 20, if different from nd identify by block number) S	schedule m Report)		
DISTRIBUTION STATEMENT Approved for public release DISTRIBUTION STATEMENT SUPPLEMENTARY NOTES KEY WORDS (Continue on reve Ducts Propagation Acoustics	(of this Report) ; distribution unlimit (of the abstract entered (of the abstract entered Computer program Numerical analysis Continued fraction	ed in Block 20, if different from nd identify by block number) S S	SCHEDULE m Report)		
DISTRIBUTION STATEMENT Approved for public release DISTRIBUTION STATEMENT SUPPLEMENTARY NOTES KEY WORDS (Continue on reve Ducts Propagation Acoustics Layers	(of this Report) ; distribution unlimit (of the abstract entered (of the abstract entered Computer program Numerical analysis Continued fraction Iterations	ed in Block 20, if different from nd identify by block number) S S	m Report)		
DISTRIBUTION STATEMENT Approved for public release DISTRIBUTION STATEMENT DISTRIBUTION STATEMENT SUPPLEMENTARY NOTES KEY WORDS (Continue on reve Ducts Propagation Acoustics Layers ABSTRACT (Continue on reve	(of this Report) ; distribution unlimit (of the abstract entered (of the abstract entered Computer program Numerical analysis Continued fraction Iterations	ed in Block 20, if different from ad identify by block number) S S	m Report)		

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601

IN THE REAL PROVIDED AND THE REAL PROPERTY OF THE PROVIDENCE OF THE PROPERTY OF THE PROVIDENCE OF THE

OBJECTIVE

Translate well-known differential equation solutions into a working program to compute propagation in underwater acoustic ducts. Document the program methods, to assist users of this and similar programs.

RESULTS

1. An effective program for computing propagation loss in a layered ocean by normal modes has been developed. Complete documentation for the program is contained herein.

2. Sediment layers are modeled as fluids in which densities, sound speeds, and absorption can be specified. This permits a complete wave solution for bottom reflected sound energy.

3. A continued fraction technique for evaluating asymptotic series is shown to give superior results in evaluating the auxiliary functions required in this program, the modified Hankel functions of order 1/3.

4. A mode follower program given here is useful in tracing eigenvalues. Such traces are needed to understand the eigenvalue structure.

RECOMMENDATIONS

1. Improve the mode locating ability of this normal-mode program to make it selfcontained. It currently requires user interaction to locate eigenvalues.

2. Investigate methods to incorporate the effect of rough boundaries into this program.

CONTENTS

INTRODUCTION ... page 3

GENERAL SOLUTION ... 4

DETERMINANT ... 8

FINDING EIGENVALUES . . . 10

Control cards . . . 10 Iteration termination . . . 11

SOUND SPEED PROFILE ... 11

NUMERICAL BREAKDOWN ... 15

Program modifications . . . 18 Preventing zeroes in the determinant . . . 19

REFLECTION COEFFICIENTS AND OTHER AUXILIARY OUTPUTS ... 20

COMPUTATION OF THE MODIFIED HANKEL FUNCTIONS ... 22

Power series expansion . . . 23 Asymptotic series expansion using continued fractions . . . 25 Comparative accuracy . . . 34

MODE FOLLOWER PROGRAM ... 36

Implementation of the mode follower . . . 38 Input and output . . . 40

CONCLUSIONS ... 41

RECOMMENDATIONS ... 41

REFERENCES ... 41

APPENDIX A: NORMAL MODE PROGRAM IN FORTRAN ... 43

APPENDIX B: SAMPLE RUN ... 74

APPENDIX C: HANKEL FUNCTION PARAMETERS ... 89

APPENDIX D: MODE FOLLOWER PROGRAM IN FORTRAN ... 93

INTRODUCTION

This report describes a normal-mode program that has been used successfully for 12 years to compute sound propagation in idealized underwater acoustic ducts. The theory and considerations used in developing the program are discussed here, and a copy of the FOR-TRAN statements are included as appendix A. Appendix B consists of sample inputs and outputs to assist users in gaining familiarity with the program. It is hoped that this report contains sufficient information to allow a user to run the program and to modify it as desired.

This program follows the methods developed by Furry and Freehoffer (ref 1) to compute electromagnetic propagation in the 1940s. Marsh adapted these methods to underwater sound in his doctoral thesis (ref 2). Using this material, Pedersen, at NOSC in the late 1950s, adapted the method to digital computers and developed the programs to compute the auxiliary functions. This original program used two layers to define the sound-speed profile (ref 3). This program was expanded to three layers by DF Gordon and RF Hosmer and finally to the multiple-layer program reported here. In this program the only constraints on the number of layers are computer space and running time. The program is normally configured to permit up to 12 layers.

The earlier programs were used to study sound propagation in ocean surface ducts. Programs that permit more layers have proven useful also for studying propagation in the deep ocean, although the number of modes required generally limits computations to frequencies below 300 Hz. The multiple-layer program has also proven useful in modeling sediment layers and thus in computing shallow-water propagation.

The principal limitation in the application of this program to real-world situations is the requirement of ideal conditions: boundaries must be smooth and horizontal, and no variation of boundary conditions with range is permitted. Despite this limitation, the program has proven useful in predicting and explaining acoustic propagation and has applications in a number of related areas. These include checking other types of wave-theory models or corrections such as caustic corrections; determining group velocities, dispersion curves, and reflection coefficients; and determining acoustic coupling between ducts.

The following paragraphs describe the specific topics covered by the sections in this report. In GENERAL SOLUTION are the equations required to solve the wave equation with the boundary conditions used here. DETERMINANT is part of the basic solution but is concerned with the particular numerical method used in this program to evaluate the conditions imposed by the boundaries. Other approaches could be used instead. A later section, NUMERICAL BREAKDOWN, is also part of the basic solution, but deals with special numerical problems that have arisen but are not apparent from the basic equations.

The Bilinear Modified-Index Profile, by WH Furry, in Propagation of Short Radio Waves, DE Kerr, ed; MIT Rad Lab series, vol 13, p 140-168, McGraw-Hill, New York, 1951.

^{2.} Navy Underwater Sound Laboratory Report 111, Theory of the Anomalous Propagation of Acoustic Waves in the Ocean, by HW Marsh, 1950.

^{3.} Normal-Mode Theory Applied to Short-Range Propagation in an Underwater Acoustic Surface Duct, by MA Pedersen and DF Gordon; J Acoust Soc Am, vol 37, p 105-118, January 1965.

FINDING EIGENVALUES deals with the philosophy of eigenvalue location employed by this program, which essentially leaves this function to the user, the program only serving as a tool. It shows how the program is used to make computations.

Several "automatic" mode finding versions of this program have been developed to the point of accommodating certain classes of profiles. However, they need further development and have not yet been reported.

SOUND SPEED PROFILE indicates the required equations for curve fitting and the various ways the sound speed can be read in on cards. A continuous water profile can be entered quite simply, but sediment layers with sound speed discontinuities and absorption gradients can become complicated.

REFLECTION COEFFICIENTS AND OTHER AUXILIARY OUTPUTS describes a short subroutine that computes reflection coefficients for any mode at a given profile interface. Intermode interference lengths and mode damping coefficients are also discussed.

COMPUTATION OF THE MODIFIED HANKEL FUNCTIONS gives the analysis necessary for computing these functions. The use of continued fractions to evaluate an asymptotic series is discussed. To facilitate running the program on computers of different word length, this section provides the information required to optimize the functions for the different word lengths.

MODE FOLLOWER PROGRAM describes a separate but related program for investigating the eigenvalues themselves rather than using them to compute propagation losses.

GENERAL SOLUTION

The derivation of the normal-mode solution has been discussed from various points of view (eg ref 1, 4, 5). Only an outline is given here. In general, the time-independent wave equation is written in polar coordinates and the azimuthal coordinate is dropped under the assumption that the field is independent of azimuthal direction. Thus

$$(1/r) \left(\frac{\partial}{\partial r}\right) \left[r\left(\frac{\partial\psi}{\partial r}\right)\right] + \left(\frac{\partial^2\psi}{\partial z^2}\right) + \left(\frac{\omega^2}{c^2}\right)\psi = 0, \tag{1}$$

where ψ is the velocity potential, c the sound speed, and the independent variables are depth, z, and range, r.

Equation (1) is then separated into range- and depth-dependent parts with a separation constant λ . The separation is possible when the sound speed is a function of depth only. After accounting for the source discontinuity and the outgoing radiation condition, integrating over all real values of the separation constant, and normalizing, one can find the solution for a field point in terms of propagation loss H as follows:

Naval Air Development Center Report NADC-72002-AE, Normal Mode Solutions and Computer Programs for Underwater Sound Propagation, by CL Bartberger and LL Ackler, 4 April 1973.

A Normal Mode Theory of an Underwater Acoustic Duct by Means of Green's Functions, by RL Deavenport; Radio Sci, vol 1, p 709-724, 1966.

$$H = -10 \log \left| \rho_{\rm s} \rho_{\rm h} \pi \sum_{n=1}^{\rm N} H_0^2 (\lambda_n r) U_n(z) U_n(z_0) \right|^2 + \alpha_{\rm A} r, \qquad (2)$$

where r is the range, z_0 is the source depth, z is the receiver depth, H_0^2 is the Hankel function of order zero, second type, λ_n is the *nth* eigenvalue, U_n is the depth function for mode n, and ρ_s and ρ_h are the densities at source and receiver. The sum is over the number of modes, N, making a significant contribution. The final term contains the volume attenuation coefficient, α_A . From Thorp (ref 6), α_A in dB/m is computed by the relationship

$$0.9144 \alpha_{\rm A} = 0.0001 \ {\rm F}^2/(1 + {\rm F}^2) + 0.04 \ {\rm F}^2/(4100 + {\rm F}^2), \tag{3}$$

where F is the frequency in kHz. Improved equations or those for specific ocean areas can be easily substituted. The depth function, U_n , is a solution to the depth-dependent part of the separated wave equation

$$d^{2}U/dz^{2} + [\omega^{2}/c^{2}(z) - \lambda^{2}] U = 0,$$
(4)

where

 $\omega = 2\pi f$

and f is the frequency, in Hz.

A closed-form solution to eq (4) can be obtained when the reciprocal sound speed squared or squared index of refraction is a linear function of depth. That form is used in this program, and sound speed in each layer is expressed as follows:

$$[c_{i}/c(z)]^{2} = 1 - 2\gamma_{i}(z - z_{i})/c_{i},$$
(5)

where c_i , z_i , and γ_i are the sound speed, depth, and sound-speed gradient, respectively, at the top of layer i. Up to 12 such layers are permitted by the program, for modeling the sound-speed profile.

With this expression for sound speed, solutions to eq (4) can be expressed in terms of solutions to Stokes' equation

h'' + zh = 0. (6)

Only a simple change in independent variable is required from z to ζ , where

$$\zeta_{i}(z) = \left[a_{i}^{3}(z - z_{i}) + \omega^{2}/c_{i}^{2} - \lambda^{2}\right]/a_{i}^{2}$$
⁽⁷⁾

and

$$a_{i}^{3} = -2\gamma_{i} \omega^{2}/c_{i}^{3}$$
 (8)

^{6.} Analytic Description of the Low-Frequency Attenuation Coefficient, by WH Thorp; J Acoust Soc Am, vol 42, p 270, 1967.

The solutions to Stokes' equation that are used are the modified Hankel functions of order 1/3, $h_1(\zeta)$ and $h_2(\zeta)$. The depth function is a linear combination of these two independent solutions:

$$F_{n,i}(z) = A_{n,i}h_1(\zeta_n) + B_{n,i}h_2(\zeta_n),$$
(9)

(0)

where F_n is the unnormalized form of U_n . The coefficients $a_{n,i}$ and $B_{n,i}$ for mode n in layer i are determined to satisfy boundary conditions, which will be listed below. Values of λ_n for which the boundary conditions can be satisfied are the eigenvalues.

The first boundary condition is the radiation condition. It is satisfied by using a negative sound-speed gradient in the deepest layer, which extends to infinite depth, and by letting the depth function there be proportional to h_2 only. That is,

$$F_n(z) = B_n h_2(\zeta_n).$$
⁽¹⁰⁾

At the surface the depth function is zero:

$$F_n(0) = 0,$$
 (11)

and at layer interfaces, ρU and its depth derivative are continuous:

 $\rho_{i}F_{n,i}(z) = \rho_{i+1}F_{n,i+1}(z); \qquad (12)$

$$dF_{n,i}(z)/dz = dF_{n,i+1}(z)/dz.$$
 (13)

Here ρ_i is the density in layer i, and the excess acoustic pressure, p, is given by

 $p = \rho U$.

If U is assumed to be the vertical component of the velocity potential, eq (12) and (13) are equivalent to requiring that the pressure and the vertical component of particle velocity be continuous across the layer interface.

Applying these boundary conditions to a sound-speed profile consisting of M layers results in 2M - 1 linear equations in h_1 and h_2 . They are homogeneous in that the constant is zero in each equation. There are M-1 coefficients A_i to be determined and M coefficients B_i . These coefficients can therefore be determined within a constant of proportionality D, provided the system of equations is linearly dependent. That is, the 2M - 1 square matrix of coefficients of A_i and B_i must be of rank 2M - 2 or less. Its determinant will then be zero. This is the eigenvalue condition. Values of λ must be found which make the determinant zero. This determinant, G, is discussed in more detail in a later section.

Zeroes of the determinant, G, are found by using the secant method. The variable in this iterative method can as well be some function of λ as λ itself, and we use the following complex phase velocity (v):

 $\lambda_{n} = \omega / v_{n}. \tag{14}$

To find a v that is a root of G requires an initial guess, v_1 , where the subscript 1 refers to the step in the iteration and a small increment, δ_1 . Each succeeding estimate is given by the relationship

$$\mathbf{v}_{j+1} = \mathbf{v}_j + \delta_j,$$

where

$$\delta_{j} = -(v_{j} - v_{j-1}) G_{j} / (G_{j} - G_{j-1}).$$
⁽¹⁵⁾

The details of this iterative process are given in a later section.

When an eigenvalue v_n is found, the coefficients are then evaluated. One coefficient can be given an arbitrary value, so A_1 is set to $\rho_1 h_2[\zeta_1(0)]$. From eq (11), B_1 is then $-\rho_1 h_1[\zeta_1(0)]$. Pairs of equations (eg (12) and (13)) for each successive interface can then be used to evaluate the next A_i and B_i as discussed later.

Finally the normalizing factor, D_n , for mode n is obtained by the relationship

$$D_n = \int_0^\infty \rho F_n^2(\zeta) \, dz.$$
(16)

This equation follows from the orthogonality of the depth functions. It is not the pressure, however, which is proportional to ρU , but $\rho^{\frac{1}{2}}U$ that is orthogonal (ref 7). Therefore, D_n must be determined such that the integral of ρU^2 is 1.

From Stokes' equation (eq (6)) and eq (7–9), the integral of F^2 takes the form

$$\int_{z_{i}}^{z_{i+1}} F^{2}(\zeta) dz = \left[\zeta_{i}(z) F^{2}(\zeta) / a_{i} + F'^{2}(\zeta) / a_{i}^{3} \right] \Big|_{z_{i}}^{z_{i+1}}.$$
(17)

Therefore

$$D_{n} = -\rho_{1}^{3} W^{2} / a_{1} + \sum_{i=1}^{n-1} \left\{ \rho_{i} [\zeta_{i}(z_{i+1}) / a_{i} - \rho_{i} \zeta_{i+1}(z_{i+1}) / (a_{i+1} \rho_{i+1})] F_{i}^{2}(z_{i+1}) + \left(\rho_{i} / a_{i}^{3} - \rho_{i+1} / a_{i+1}^{3}\right) F_{i}^{\prime 2}(z_{i+1}) \right\},$$
(18)

where eq (12) and (13) have been used to combine terms at each interface. The derivative of F takes the form

$$F'_{i}(z_{i+1}) = a_{i} \left\{ A_{i}h'_{1}[\zeta_{i}(z_{i+1})] + B_{i}h'_{2}[\zeta_{i}(z_{i+1})] \right\}$$
(19)

The Wronskian, W, is an imaginary constant (see eq (85)) and is the contribution of eq (17) at the surface:

$$W = -1.45749544104i.$$

^{7.} Some Effects of Velocity Structure on Low-Frequency Propagation in Shallow Water, by AO Williams; J Acoust Soc Am, vol 32, p 363-365, March 1960.

The depth functions are normalized by the relationship

$$U_{n}(z_{0}) U_{n}(z) = F_{n}(z_{0}) F_{n}(z)/D_{n}.$$
(20)

The functions F and F' used in computing D_n are conveniently assembled from the elements of the determinant and the coefficients A_i and B_i . This requires care in developing the computer code, because F is always multiplied by ρ and F' has the term a_i in it. The surface differs from the other layers in that F_1 is zero there and F'_1 , by eq (19), is a_1W . However, because ρ_1 appears as a factor in the coefficients of F_1 , the actual value of F'_1 at the surface in the computation is $\rho_1 a_1W$. This factor of ρ_1 together with the $\rho_1^{1/2}$ needed for orthogonality, when squared, gives the ρ_1^3 of eq (18).

DETERMINANT

Normal modes are determined by finding the eigenvalues of a characteristic equation which, in turn, is obtained by setting a determinant to zero. The determinant is obtained from the coefficient matrix of a set of linear, homogeneous equations expressing the boundary conditions as given by eq (10) - (13). Since the method of handling this determinant is a central feature of this normal-mode program, it is given in detail here.

The first line of the matrix is taken from eq (11) as

$$B_1 \rho_1 h_2 [\zeta_1(0)] + A_1 \rho_1 h_1 [\zeta_1(0)] = 0.$$
⁽²¹⁾

At each profile interface, i, where i numbers the interfaces below the surface from 1 to N-1, the two boundary conditions given by eq (12) and (13) are

$$B_{i} \rho_{i} h_{2} [\zeta_{i} (z_{i+1})] + A_{i} \rho_{i} h_{1} [\zeta_{i} (z_{i+1})] - B_{i+1} \rho_{i+1} h_{2} [\zeta_{i+1} (z_{i+1})] - A_{i+1} \rho_{i+1} h_{1} [\zeta_{i+1} (z_{i+1})] = 0$$
(22)

and

$$B_{i} a_{i} h'_{2} [\zeta_{i} (z_{i+1})] + A_{i} a_{i} h'_{1} [\zeta_{i} (z_{i+1})] - B_{i+1} a_{i+1} h'_{2} [\zeta_{i+1} (z_{i+1})] - A_{i+1} a_{i+1} h'_{1} [\zeta_{i+1} (z_{i+1})] = 0 .$$
(23)

The coefficients of A_i in the first equation and B_{i+1} in the second will be the diagonal elements of the matrix. The nonzero elements of the matrix will therefore be no more than two places from the diagonal. The matrix can be stored in the computer in an array of size $(2M-1) \times 4$, where M is the maximum number of layers in the sound-speed profile. In the final layer, $A_N h_1$ is omitted, as in eq (10). In the program, the real and imaginary parts are stored in separate arrays.

The sparseness of the matrix permits efficient evaluation by a triangularization process of row reduction. For each pair of rows representing a pair of equations given by eq (22) and (23), the first element from the first equation and the first two from the second equation must be set to zero by subtracting the proper multiple of preceding rows. The determinant is then the product of the diagonal elements of the triangularized matrix. The value of the determinant, G, is used in eq (15) to find the roots by iteration.

(20)

Note that a value of v that makes this determinant zero, or near zero, ordinarily is zero because only one diagonal element is very small. For trapped modes this element is at the row representing the first interface below the mode, ie the interface just below the layer of positive gradient in which the sound speed is equal to the mode phase velocity. For unstrapped modes it is usually the final diagonal element that is small. Thus the layers in which the sound speed is greater than the phase velocity of a mode do not greatly affect the eigenvalue. Eigenvalues are determined mainly by those parts of the sound-speed profile that are less than the phase velocity.

When an eigenvalue is found, the coefficients A_i and B_i must next be evaluated. As mentioned earlier, one coefficient can be arbitrarily chosen. This is done, and eq (21) is satisfied by letting

$$A_1 = \rho_1 h_2[\xi_1(0)]$$

and

$$B_1 = -\rho_1 h_1 [\xi_1(0)].$$

The factor ρ_1 is used simply because the number containing it is easily available in the program. It is divided out by the normalizing factor, D. Eq (22) and (23) can then be used to evaluate the remaining coefficients, but the triangularized form of the matrix yields the coefficients with less computation. If g_{ij} is the element in the *ith* row and *jth* column of the triangularized matrix, then by Cramer's rule,

(24)

(25)

$$B_i = A_{i-1} g_{2i-2, 2i-2} g_{2i-1, 2i}/E_i$$

and

$$A_i = -A_{i-1} g_{2i-2, 2i-2} g_{2i-1, 2i-1}/E_i$$

where

$$E_i = g_{2i-2, 2i-1} g_{2i-1, 2i} - g_{2i-2, 2i} g_{2i-1, 2i-1}$$

A simpler form is used for B_N in the final layer since there is no A_N there.

In certain situations numerical problems can arise in evaluating the determinant. These require some extra tests in the subroutine that makes the evaluation. The extra tests will be discussed in the section, NUMERICAL BREAKDOWN. A more routine problem is the loss of accuracy that can arise in subtractions in the row reduction of the matrix. This loss results in less sharpness of convergence to a root. The size of the determinant, G, can be 14 orders of magnitude less at a root than at the general background near the root. This variation occurs because the modified Hankel functions can be computed to about 14-place accuracy in a computer with 18 decimal places available. Modes usually converge to 10 or 12 places; thus a few places are lost in evaluating the determinant. In some profiles, usually those with multiple ducts or those in which propagation through bottom sediments plays a large part, the convergence can be much poorer. Modes need to converge to about 4 places to be reliable for computing losses, and convergence occasionally fails to meet this requirement. The only current cure for this loss in accuracy is to go to higher-precision arithmetic or to compute the modified Hankel functions to greater accuracy. For instance, a standard matrix triangularization routine that uses full row and column pivoting has been tried with no resultant increase in accuracy.

FINDING EIGENVALUES

There are versions of this program under development that will locate the eigenvalues and do the entire computation without user intervention. Currently, however, these versions are reliable only for the simpler types of profiles – usually those with only one duct – and are not ready to be reported. Locating eigenvalues with the standard version of the program is discussed here.

The standard version of the program requires the user to find the eigenvalues. In this version, each time an eigenvalue is determined by iteration, the resulting value is stored and counted as an eigenvalue. Therefore, the user must ensure that all iterations result in good roots, that all required modes have been determined, and that no modes are present more than once. In most cases the user must expect to make more than one computer run to obtain this result.

CONTROL CARDS

The user controls the eigenvalue determination by using any of four different types of control cards. The first type specifies an initial value for v and an initial step size, Δv . These are both complex numbers with a real and an imaginary part. G is then evaluated at v and at v + Δv to start the iteration. These are essentially the v_j and v_{j+1} of eq (15). If these two trial eigenvalues are in the vicinity of a root, the iteration will converge to that root.

The second type of card specifies a line segment in the complex plane, along which a search for eigenvalues, v, is made. The end points of the line are given along with the number of equally spaced points at which the line is to be divided. G is then evaluated at each successive division point along the line until a relative minimum in $|G^2|$ is found, indicating that a root is nearby. The iterative process is applied to find the root. The initial step size, Δv , is first computed to bring the second evaluation at $v + \Delta v$ as close as possible to the true root. This is done by using the point which resulted in minimum $|G^2|$ and the points on either side of it to determine the minimum of the parabola passing through them. If v - h, v, and v + h are the three points at which G was evaluated, it follows that the distance from v to the minimum of the parabola

$$A_{v} = h[G(v + h) - G(v - h)]/2[2G(v) - G(v + h) - G(v - h)].$$
⁽²⁰⁾

When the iteration is complete, the eigenvalue is recorded and the program continues to step along in the direction of the given line, checking again for a minimum. However, the stepping is resumed from the newly located root rather than from the approximate location where the minimum was detected. With this correction in position, the designated line does not have to hug the curve on which the eigenvalues are located because it is corrected at each eigenvalue.

This method of finding eigenvalues has proven very successful. Its main utility arises, though, because the eigenvalues of the trapped modes have negligible imaginary parts and the

search can be made along the real line. In simple profiles this can often give a successful set of modes on the first try. Usually, only the three initial eigenvalues need to be located by this means because further eigenvalues can be located by extrapolation on the previous three. This is the function of the third type of control card.

The third type of card specifies the number of additional modes to be determined by extrapolation. The starting value of each eigenvalue is determined by extrapolating from the three most recently determined eigenvalues to find v. The step size, Δv , is chosen as 0.0001 times the distance between the last two eigenvalues. The exact eigenvalue is then determined by iteration. The extrapolation is the simple parabolic form for equal steps:

$$\mathbf{v} = 3\mathbf{v}_{n} - 3\mathbf{v}_{n-1} + \mathbf{v}_{n-2}.$$
 (27)

This method of locating modes works well when the modes lie along a smooth curve, as usually occurs for single ducts. But this relationship does not always occur for profiles with multiple ducts.

The final control card is punched by the program when requested and contains the correct eigenvalue to full precision. Upon encountering this card, the program does not iterate, but instead evaluates G for this eigenvalue and stores this value of G as the next eigenvalue. A deck of such completed eigenvalues can be stored, saving the expense of recomputing the eigenvalues for a given profile and frequency.

ITERATION TERMINATION

A full description of the iteration of eq (15) should include the method of termination. The usual criterion for stopping is that G fails to become smaller. As G approaches minimum size, however, round-off error can act as noise so that G is no longer a predictable function of v. The denominator of eq (15) can then be very small by chance, resulting in a large value for δ_i . If this happens, the next value of v, which was as near to the root as possible, will be far away. A much better convergence criterion is that δ_i has reached a minimum in absolute value. In the program, iteration is stopped when $|\delta^2|$ exceeds the previous value by a factor of 2. However, this criterion is not applied until three iterative steps have been completed, to permit the process to become well established. An upper limit of 15 iterative steps is permitted. We have not found an improvement on the root after 15 steps.

SOUND SPEED PROFILE

The normal mode program requires as inputs the depth of each layer and the sound speed and sound speed gradient at the top of each layer. These variables are mapped into the dimensionless internal variables of the program by eq (7). The purpose of the sound speed profile processing portion of the program is to accept the profile parameters in a form convenient for the user and to translate them into the required sound speeds and gradients.

The first function of the processing program is to make the sound speed continuous at interfaces. This is done simply by using the sound speed at the bottom of one layer as the sound speed at the top of the next. It may be necessary to compute the sound speed at the bottom of the layer. The necessary parameters will have been given. Occasionally a discontinuity in sound speed is required, as when modeling an interface between water and sediment. The user indicates this by specifying the sound speed at the top of the layer. If left blank, the program provides the sound speed necessary for continuity.

A second function of the processing program is to permit a layer to be defined by the sound speed at top and bottom of the layer rather than by one sound speed and one gradient. Note that the profile form as given by eq (5) is a two-parameter curve.

The last layer extends to infinite depth, so a gradient must be specified at the top of it. However, this gradient can be specified by giving a depth and sound speed point below the last layer. The program handles this by checking to see if the gradient of the last given layer is unspecified. If it is, the number of layers is reduced by one, which causes the last layer to be only the required extra point determining the final gradient. This final gradient must always be negative, as is required by the boundary conditions. The program user must ensure that this gradient is negative and that no gradient is zero. A zero gradient will appear in the denominator of eq (7).

These functions of the profile processing program are relatively simple, but an additional capability used to model sediment bottoms greatly increases the complexity of the program. The capability required is to specify the absorption in a layer by adding an imaginary part to the sound speed. In older versions of this normal mode program an imaginary part, expressed as an absorption coefficient, could be added to the sound speed at the top of the layer. This imaginary part is small compared to the real part. Since the gradient was assumed real at the top of the layer, the imaginary part was initially not changing with depth and it usually changed only a minor amount through the depth of the layer. However, this small change could not always be relied upon. Also Hamilton (ref 8) has published data on absorption gradients in sediment layers, so more precise control of this part of the sound speed function is needed to model sediment layers. Therefore, a more comprehensive profile processing routine has been incorporated in the normal mode program. This curve-fitting process is described below.

The following quantities can be input for each layer depth starting at the surface:

Depth of top of the layer Sound speed at top of layer Sound speed at bottom of layer Real part of sound speed gradient at top of layer Attenuation in loss per km at the top of the layer A similar attenuation at the bottom of the layer Density in the layer

The density is a constant in the layer and as such requires no further curve fitting. Redundant parameters are left blank on input cards. In some cases negative values serve as flags to indicate specific treatment. For instance a negative value of absorption at the top of a layer

Sound Attenuation as a Function of Depth in the Sea Floor, by EL Hamilton; J Acoust Soc Am, vol 59, p 528-535, March 1976.

directs the program to use the same imaginary part of sound speed as occurred at the bottom of the previous layer. Similar flags at the bottom of a layer are discussed later.

Absorption per Hz is given in units of decibels per km (or kiloyard). The quotient of absorption over frequency is used because Hamilton (ref 8) usually considers absorption (or attenuation) as proportional to frequency with a coefficient k. We use the symbol h instead. That is,

 $\alpha = hf.$

We interpret α to be in units of dB per km and f in Hz, whereas Hamilton uses dB per m and kHz; but the coefficients h and k remain equal.

The complex wave number in layer i is represented as

$$k_{i} = \omega / C_{i}$$

= $\omega \text{ReC} |C|^{-2} - i\omega \text{ImC} |C|^{-2}.$ (28)

A plane wave will be attenuated α dB per km if

Imk_i =
$$-\alpha/(20\,000\,\log\,e)$$

= $-\pi Af$, (29)

where

$$A = h/(20\,000\,\pi\log e).$$

By equating the imaginary part of k_i in eq (28) and (29), the imaginary part of C_i is found to be as follows:

$$ImC_{i} = 1/A - [1/A^{2} - (ReC_{i})^{2}]^{\frac{1}{2}}.$$
(30)

If α is zero, which is the case usually used in water layers, eq (30) cannot be used; but the imaginary part of C is then simply zero. These two cases are treated separately in the program.

When sound speed is given at the top and bottom of layer i, the imaginary parts of the sound speeds are determined by eq (30) and the only curve fitting task is to determine the gradient γ_i . Solving eq (5) for γ_i ,

$$\gamma_{i} = C_{i}(C_{i+1}^{2} - C_{i}^{2})/2C_{i+1}^{2}(z_{i+1} - z_{i}).$$
(31)

The gradient is a complex number since the C's here are complex. The z's are real.

A second version of this computation arises if the gradient is required to be a real number. In this case, which is used to match older versions of the program, an additional parameter must be left unspecified and this parameter is $\text{Im } C_{i+1}$. This is equivalent to having the sound absorption at the bottom of the layer unspecified. Therefore, a negative number input for this parameter is used as a flag to call for this particular fitting procedure.

For this situation, given Re C_i , Im C_i , Re C_{i+1} , and making γ_i real, the determination of γ_i and Im C_{i+1} is not simple. When γ_i is eliminated from the real and imaginary parts of eq (31), a quartic equation in Im C_{i+1} results. Rather than derive an algebraic solution to this equation, it is solved by iteration under Newton's method. A good first guess at the solution is Im $C_{i+1} \cong$ Im C_i . Four iterations usually give an accurate root. The equation is

$$\operatorname{Im} C_{i} (\operatorname{Im} C_{i+1})^{4} + \left[\operatorname{Im}(C_{i})^{3} + 2(\operatorname{Re} C_{i+1})^{2} \operatorname{Im} C_{i} \right] (\operatorname{Im} C_{i+1})^{2} + 2\operatorname{Re} C_{i+1} \operatorname{Re}(C_{i})^{3} \operatorname{Im} C_{i+1} + \operatorname{Im} C_{i} (\operatorname{Re} C_{i+1})^{4} - (\operatorname{Re} C_{i+1})^{2} \operatorname{Im}(C_{i}^{3}) = f(\operatorname{Im} C_{i+1}).$$
(32)

The root is then found:

$$(\operatorname{Im} C_{i+1})_{j} = (\operatorname{Im} C_{i+1})_{j-1} - f/f'.$$

The gradient, γ , is next given by the relationship

$$\gamma_{i} = \left\{ \operatorname{Im} C_{i} \left[(\operatorname{Re} C_{i+1})^{2} - (\operatorname{Im} C_{i+1})^{2} \right] + 2\operatorname{Re} C_{i} \operatorname{Re} C_{i+1} \operatorname{Im} C_{i+1} - \operatorname{Im} (C_{i}^{3}) \right\} \right|$$

$$[4 \operatorname{Re} C_{i+1} \operatorname{Im} C_{i+1} (z_{i+1} - z_{i})].$$
(33)

Because the root of eq (32) may not be exact, Im γ_i may not be exactly zero. This slight error can be transferred to C_{i+1} by using the computed real γ_i to recompute C_{i+1} . This is done in the program by transferring to a portion of the program already designed to do this.

When sound speed and gradient at the top of the layer are given, the parameters required by the program are all given. The sound speed at the bottom of the layer is routinely computed, however, because it may be required to make the next layer continuous. Equation (5) is used to determine the sound speed at depth z_{i+1} , which is the depth of the bottom of the layer. This is straightforward, but several complications arise. Only the real part of the gradient at the top of the layer is used as an input because situations have not arisen that require that the imaginary part of the gradient be specified. Often the attenuation is given at both top and bottom of the layer. That is, Re C_i, Im C_i and Re γ_i are given, plus a relationship between Re C_{i+1} and Im C_{i+1}. The imaginary part of the gradient, Im γ_i , must be determined as well as both real and imaginary parts of the sound speed at the layer bottom. The derivation of this case is not trivial.

One relationship between the real and imaginary parts of the sound speed is given by eq (28) and (29). From these equations at C_{i+1} we derive

(34)

$$A(T - i) = 2/C_{i+1},$$

where

$$T = \text{Re } C_{i+1} / \text{Im } C_{i+1}$$

Substituting this expression for C_{i+1} into eq (31) and equating real parts gives a quadratic expression for T which has a usable root of

$$\operatorname{Re}(C_{i}^{3})T = -\operatorname{Im}(C_{i}^{3}) - \left\{ [\operatorname{Im}(C_{i}^{3})]^{2} + \operatorname{Re}(C_{i}^{3})B \right\}^{\frac{1}{2}}$$

where

B = Re(C_i³) - 8 Re
$$\gamma_i(z_{i+1} - z_i)/A^2 + 4 \text{ Re } C_i/A^2$$

From eq (34),

Re
$$C_{i+1} = 2T/A(T^2 + 1)$$

and

$$Im C_{i+1} = RC_{i+1}/T.$$

The gradient can now be evaluated by eq(31) to find its imaginary part.

Equations (34) and (35) cannot be used if the attenuation at the bottom of the layer is given as zero. Therefore an alternate form must be used. This form is much simpler than the previous case, since C_{i+1} is real.

$$C_{i+1} = \left\{ \operatorname{Re}(C_i^3) \middle/ [\operatorname{Re} C_i - 2 \operatorname{Re} \gamma_i (z_{i+1} - z_i)] \right\}^{\frac{1}{2}}$$
(37)

Im
$$\gamma_i = [\text{Im } C_i - \text{Im}(C_i^3)/C_{i+1}^2] [2(z_{i+1} - z_i)]^{-1}$$
 (38)

Finally, if the special case, γ_i real, is specified by inputting a negative value for absorption, eq (31) can be used directly to give

$$C_{i+1}^{2} = C_{i}^{3} / [C_{i} - 2\gamma_{i}(z_{i+1} - z_{i})].$$
(39)

To evaluate the square root, let

$$C_{i+1}^2 = a + bi.$$

Then

Re C_{i+1} =
$$\left\{ \left[a + (a^2 + b^2)^{\frac{1}{2}} \right] / 2 \right\}^{\frac{1}{2}}$$
 (40)

and

$$\text{Im } C_{i+1} = b/2 \text{ Re } C_{i+1}.$$

(41)

(35)

(36)

NUMERICAL BREAKDOWN

A situation arises frequently in which a very small depth function must be computed from the difference of two large numbers. A wrong answer results if this accuracy loss exceeds the word size of the computer. The best way that has been found to avoid this is to check for it within the program and arbitrarily replace the wrong number. In checking for this, a constant, called T-lim in the computer program, is compared to the argument of the modified Hankel functions or to the argument of the exponential function within modified Hankel functions. A T-lim value of 25.0 is used in the program, but a smaller number occasionally is required. The program user can alter T-lim by appropriate input cards (Key 8 = 1 followed by a new value of T-lim). The next few paragraphs demonstrate the symptoms of this problem, so as to assist a user in recognizing the problem. The remainder of this section describes the modifications that have been made to the computer program to correct this loss of accuracy.

The solid line of figure 1 shows a simple surface duct and the phase velocities of the first three modes at 3 kHz. For this profile, the depth function of mode 1 is shown in figure 2. The solid line is the depth function as computed by a program that does not correct for numerical breakdown. The dashed line shows the correct depth function below a depth of 71 m. This result was determined from Airy functions, not from the program. Between depths of 71 to 100 m, the program cannot compute the depth function accurately. In the second layer, which starts at a depth of 100 m, the function can be computed accurately but it is incorrectly placed by the boundary condition that requires the depth functions to be continuous at interfaces. The slope of the depth functions in the second layer. The shape is such as to make the correct depth function continuous in slope across the interface.

The breakdown in accuracy at a depth of 71 m occurred when ζ had a value of -8.4. (ζ is given by eq (7) and is the argument of the modified Hankel functions.) A negative value of ζ occurs when the mode phase velocity is less than the speed of sound. Since the ray of the same phase velocity cannot reach such a region, the sound field there is a diffracted field. The mode depth function is therefore small at such depths. In the figure, the depth function amplitude at the breakdown point is about 7 orders of magnitude (or in terms of propagation loss, 140 dB) down from its maximum. Equations (62), (66), and (68), which will be given for the modified Hankel functions, indicate that the argument of the exponential term is $2/3(8.4)^{3/2}$, or 16.2. The functions h₁ and h₂ will thus be about 10⁷ in magnitude at a depth of 71 m. These large values and their small difference account for the approximate accuracy loss of 14 decimal places, which is the general accuracy of the modified Hankel functions.

Incorrect behavior in the depth function usually occurs when ζ is about -8.4. In some more complicated profiles, however, where accuracy is lost in row reduction of the determinant, the depth functions may become incorrect at values of ζ that are less in absolute value. When this problem occurs it can be diagnosed by plotting the depth function of the mode and noting the steep positive slope through some depth interval as in figure 2. When that occurs, the value of T-lim should be decreased.

Incorrect depth functions can cause errors in propagation loss computations in two ways. In figure 2, the solid-line depth function, because of its large size, can cause losses to be too low at a depth of around 100 m. The second error would occur if the duct were deeper, say 110 m. At this depth the erroneous segment of depth function in figure 2 would reach a value of about 10^{-1} , where it would be larger than the correct lobe of the depth function near the surface. With this extra area under the curve, the normalizing factor would be increased significantly and would reduce the size of this entire depth function. Thus, losses near the surface would be larger because of the loss in size of mode 1.

Figure 2. Depth function of mode 1 at 3 kHz, showing error in the computed function. The true function cannot be computed without increasing computer word length, but the corrected value can and it will not cause a large error in the mode sum.

The standard correction to mode 1 is shown in figure 2 by the dot-dashed line. In the depth interval where $\zeta < -8.4$, the function is set to zero. The values of the depth function at greater depths result from a modification in the values used in the determinant.

The corrected values in figure 2 are not equal to the true value of the depth function, but they are small enough that they do not alter the propagation loss to a tenth of a decibel when a full set of modes is used. When the source or receiver is at a depth where such corrections are necessary, the mode can be omitted from the computation. Thus, properly omitting modes would solve the above problems except for the cases where the normalizing factor, D, is affected. In these cases, losses cannot be computed accurately without the corrections.

PROGRAM MODIFICATIONS

The modification is approximately equivalent to modifying the sound speed profile as shown by the broken line in figure 1. In effect, the sound speed is not allowed to become enough greater than the phase velocity of the mode being considered to cause problems.

The limitation on ζ is accomplished at three different places in the normal mode program. It is not clear that this is the best way to handle the problem and it may be redundant, but it appears to be an adequate solution. These three corrections will be described next. Finally a correction to the determinant program is described which is necessary because the limiting of ζ can cause false zeroes in the determinant.

In the subroutine SETUP the elements of the determinant are computed by determining ζ at the top and bottom of each layer and then calling the modified Hankel function program. At the top of each layer, Re ζ is set to -7.5 if its value was less. However, this is done in an iterative loop in which the real part of ω/C_i in eq (7) takes on a sufficiently larger value while its imaginary part is fixed. This is done to retain the absorptive properties of a layer when its sound speed is in effect being reduced. It has been found unnecessary to make the above constant, -7.5, a function of T-lim which the user can vary, because an oversized value at the top of a layer is not as critical as at the bottom. At the bottom of a layer, several tests are made. If the real part of ζ has decreased past the limit at some depth between the top and bottom of the layer, it is set at the limit. This limit, called S-lim in the program, is related to T-lim by the relationship

$$S = -(T)^{2/3}$$

where S and T are the two limits. If Re ζ is less than -7.5 throughout the layer, it is simply set at -7.5. Such a layer has negligible effect on a mode.

In program MAIN at the location where depth functions are computed for given depths, a process similar to that above is used. To evaluate the depth function in a given layer, ζ is first evaluated at the top of the layer. The real part of ζ is then limited as in the program SETUP above. Next ζ is evaluated at the given depth by adding the depth-dependent part onto the value at the top of the layer which may be the modified value. If this final value is less than S-lim, the depth function is set to zero. If it is greater than S-lim, the function is computed in the usual way.

(42)

The imaginary part of ζ can be large if the eigenvalue has a large imaginary part or if the speed of sound in the layer has a large imaginary part. When this happens the imaginary part of $2/3 \zeta^{3/2}$, which appears as an exponential in the modified Hankel functions, may become large in absolute value even though Re ζ has been limited. A final check is therefore made before the exponential is computed. If Im $\zeta^{3/2}$ is greater than T-lim, ζ is reduced in amplitude to the size at which it will equal T-lim. The angle of ζ in the complex plane is preserved.

This limitation of the exponential can be viewed in another way. In a following section the two components of the modified Hankel functions, F_1 and F_2 , eq (68) and (69), have exponential terms whose arguments are equal and opposite in sign. When these arguments have magnitude of 2/3 T-lim, they differ in size by 15 decimal places, which is near the 18-decimal-place word size of the machine. The ability to compute the difference in these two terms is essentially the same as the ability to compute the depth function accurately.

PREVENTING ZEROES IN THE DETERMINANT

Placing limits on ζ can cause problems in the determinant because ζ may be set equal to S-lim at several interfaces. The equations that arise for matching boundary conditions may then be identical for these interfaces and may therefore fail to be linearly independent. The triangularized determinant will thus have zeroes on the diagonal at positions equivalent to interfaces that do not have real physical importance for the mode. These will prevent location of the significant "zeroes" or roots. These artificial zeroes must be removed.

The artificial zeroes are detected and removed in the subroutine DET, which evaluates the determinant. If four elements from the matrix have the configuration

a b

c d

and c is to be set to zero by row reduction, d will be replaced by a value, x, as follows:

x = d - bc/a.

If d is located on the diagonal, complete loss of accuracy is checked for by computing

$$s = |x^2| / |d^2|.$$

If s is less than 10^{-34} , x is not used; instead, d is replaced by 10^{-17} d. Note that this substitution will occur when x is zero, thus preventing zeroes on the diagonal. The power of ten, -17, is chosen to be near the total word size of 18 decimal places.

The above substitution prevents sudden jumps in the value of the determinant when all precision is lost at one step in the evaluation. This is important for the mode search routine which detects roots by looking for minima in a series of values of the determinant while one parameter is incremented slowly. A sudden jump will often produce a relative minimum which will be falsely interpreted as a root. At true roots, one or more elements along the diagonal are small, but not as small as those checked for here.

REFLECTION COEFFICIENTS AND OTHER AUXILIARY OUTPUTS

Once the depth functions of a mode have been determined, it is relatively easy to compute reflection coefficients at any interface. Therefore, a subroutine called RCOEF has been added to the program which will compute and print out reflection coefficients if requested by the use of control key 3. If key 3 is set to 1, the reflection coefficients at all interfaces are computed. If set to a number, n, greater than 1, the coefficient is computed at the nth interface only, where the surface is the first interface.

The printout includes the phase as well as the amplitude of the reflection coefficient and the grazing angle. The grazing angle, θ , of the equivalent rays is computed from the mode phase velocity and the sound speed, c, at the bottom of the layer, by Snell's law:

$$\theta = \cos^{-1} (c/v).$$

The grazing angle is computed only if the phase velocity is greater than the sound speed at the interface, since otherwise the equivalent ray does not reach the interface.

The reflection coefficient is derived, following Bucker (ref 9), by assuming that an isospeed layer exists for a small depth just above the interface. In this layer the depth function can be written as

$$f(z) = Ae^{ilz} + Be^{-ilz}.$$
(43)

where 1, the vertical component of the mode wave number, is given for mode n by

$$l_{n}^{2} = k_{i}^{2} - \lambda_{n}^{2}$$
(44)

and

$$k_i = \omega/c_{bi}$$
,

where c_{bi} is the sound speed at the bottom of layer i. The derivation now consists of identifying A and B as the pressures of the upgoing and downgoing waves at the bottom of the layer; thus the reflection coefficient

$$R = A/B$$
.

A and B are evaluated by making f and its derivative at the interface between this small isospeed layer and the regular profile continuous with the normal mode depth functions. The thickness of the isospeed layer is then allowed to approach zero, giving the desired value of R. If F and F' are the normal mode function and its depth derivative at the interface depth defined by eq (9) and (19), the reflection coefficient resulting from the above derivation is as follows:

$$R = (iIF + F')/(iIF - F').$$

(45)

This coefficient is a complex number. Loss per reflection is given by 20 times the log of the absolute value. The phase gives the phase shift that an equivalent ray would

Sound Propagation in a Channel with Lossy Boundaries, by HP Bucker; J Acoust Soc Am, vol 48, p 1187-1194, November 1970.

experience upon reflection. Figure 3 is an example of the use of this computation. It shows phase and amplitude of the reflection coefficient in shallow water over a sandy-silt sediment lying over rock. The frequency is 1500 Hz. Reflections are given only at discrete points determined by the individual modes.

The model in figure 3 is for a liquid bottom. That is, no rigidity is supplied in this program and the sound speed, density, and attenuation determine the reflection coefficients.

The reflection coefficients computed by eq (45) can be closely approximated by dividing the mode attenuation by the loop length of the corresponding ray. The loop length must be determined from ray theory for the ray of the same phase velocity or vertexing velocity. However, an interesting analog of the ray loop length is the intermode interference length. This is discussed by Guthrie (ref 10). Specifically, if the difference between eigenvalues, $\text{Re}\lambda_i$, for two adjacent modes is $\Delta\lambda$, the interference length $1 = 2\pi/\Delta\lambda$. This distance will usually equal the ray loop length for some ray with phase velocity between that of the two modes.

As each mode after the first is computed, the length, l, is computed and printed out. Also routinely printed out for each mode is the mode damping or mode attenuation coefficient, in units of dB per km. This attenuation, α_i , is computed from the relationship

 $\alpha_i = -1000 \text{ Im } \lambda_i \log_{10} e$ $= -8686 \text{ Im } \lambda_i.$

This quantity multiplied by range gives the damping of mode i, in dB.

10. The Connection Between Normal Modes and Rays in Underwater Acoustics, by KM Guthrie; J of Sound and Vibration, vol 32, no 2, p 289-293, 1974.

Figure 3. A shallow-water profile with resulting phase and amplitude of the reflection coefficient at 1.5 kHz. Parameters at the top of the sediment layers are as follows: 1st layer $-c = 1606.45 \text{ m/s}, \gamma = 1.5\text{s}^{-1}, \alpha = 0.18 \text{ dB/m}, \rho = 1.68; 2nd layer <math>-c = 1684.0 \text{ m/s}, \gamma = 1.5\text{s}^{-1}, \alpha = 1.10 \text{ dB/m}, \rho = 1.91; \text{ final layer} - \gamma = -0.1.$

COMPUTATION OF THE MODIFIED HANKEL FUNCTIONS

Most of the computer time required to determine eigenvalues and compute depth functions is spent in evaluating the modified Hankel functions of order 1/3. For this reason, minimizing computer time in evaluating these functions is desirable. Gaining as many places of accuracy as possible is even more important. The average normal mode computation will have many modes that can be determined to far greater accuracy than is required to obtain 0.1 dB accuracy in the propagation loss. However, there are usually some and often many modes in which many places of accuracy are lost in evaluating the determinant. Therefore, maximum accuracy in the modified Hankel functions is required to extend the range of cases for which computations can be carried out successfully.

Optimization of the program is a function of the computer word length. The program given in this report is for the UNIVAC 1110 with 60 bits word length in double precision or 18.1 decimal places. This section gives the equations and computational techniques that are required to optimize this program for different computer word lengths. Complete details of the functions are given in reference 11.

The Airy functions Ai(Z) and Bi(Z) can be used instead of the modified Hankel functions h_1 and h_2 . However, since h_2 is ideally suited to matching the boundary conditions at great depth as formulated in this normal mode program, h_1 and h_2 are used here. The relationship between them is as follows:

$$h_1(z) = k [Ai(-z) - i Bi(-z)]$$

(46)

(47)

$$h_{2}(z) = k^{*} [Ai(-z) + iBi(-z)]$$
,

where

 $k = (3/2)^{2/3} (1 - i\sqrt{3/3})$, and k^* is the complex conjugate of k.

In this section z will be the argument of the functions h_1 and h_2 . For small values of |z|, h_1 and h_2 are computed by power series expansions. For large values, an asymptotic expansion is used. In the past the asymptotic series was expanded directly. However, a continued fraction expansion has been found to give both shorter running time and better accuracy.

Figure 4 shows a line in the complex plane which divides the plane into two parts. For values of z within the line, the power series method is used. When z is outside the line, the continued fraction method is used. This line is a function of computer word length, and the method of determining it will be given after the two methods have been treated. The accuracy of the methods is also treated.

The program has a parameter called IH in the FORTRAN call statement which controls which functions are computed. If IH is set to zero, both functions and their derivatives are computed. If IH is set to 1, only the functions are computed. If it is set to 2, only h_2 and its derivative are computed.

^{11.} Tables of the Modified Hankel Functions of Order One-Third and their Derivatives, Harvard University Computation Laboratory; Harvard University Press, Cambridge MA, 1945.

Figure 4. Line in complex plane dividing the arguments for which the modified Hankel functions are computed by (1) power series (inside) and (2) asymptotic expansion evaluated by continued fractions (outside).

POWER SERIES EXPANSION

In this expansion h_1 and h_2 are given by two auxiliary functions f and g as

$$h_1(z) = g + i(3)^{-1/2} (g - 2f)$$
(48)

$$h_2(z) = g - i(3)^{-1/2}(g - 2f)$$
 (49)

The auxiliary functions are given by the expressions

$$f = A \sum_{m=0}^{M} a_m X^m$$
(50)

$$g = Bz \sum_{m=0}^{M} b_m X^m$$
, (51)

where $X = z^3$, $A = \frac{21/3}{[\Gamma(2/3)]}$ and $B = \frac{21/3}{[3^{2/3} \Gamma(4/3)]}$. The derivatives $h'_1(z)$ and $h'_2(z)$ can be derived by straightforward differentiation of eq (50) and (51) to give

$$f' = -A z^2 \sum_{m=0}^{M} c_m X^m$$
(52)

$$g' = B \sum_{m=0}^{M} d_m X^m$$
 (53)

The coefficients of eq (50) – (53) are given by recursion relations where $a_0 = 1$, $a_1 = 1/3!$, $a_2 = +1 \cdot 4/6!$, $a_3 = -1 \cdot 4 \cdot 7/9!$

$$a_{\rm m} = -a_{\rm m-1}/(3{\rm m}) (3{\rm m}-1)$$
 (54)

 $b_{0} = 1, b_{1} = -2/4!, b_{2} = +2 \cdot 5/7!, b_{3} = -2 \cdot 5 \cdot 8/10!$ $b_{m} = -b_{m-1}/(3m) (3m+1)$ $c_{0} = 3/3!, c_{1} = -6 \cdot 1 \cdot 4/6!$ $c_{m} = -c_{m-1}/3m (3m+2)$ $d_{0} = 1, d_{1} = -4 \cdot 2/4!$ $d_{m} = -d_{m-1}/3m (3m-2)$ (57)

It is important for efficient computation that the number of terms M be no larger than necessary. In the current program the same value of M is used in all four sums. This is done because the optimum number never differs by more than one in the four cases and the determination by table look-up of four M's often would take longer than computing any unnecessary terms. M for each series is determined so that adding additional terms will not change the answer. Then the most stringent of the four conditions is tabulated and used.

A precise determination of the number of terms to use requires a knowledge of the size of the largest single term in the sum. When a term is smaller than this by a factor which is the power of 10 equal to the number of decimal places in the computer word size, it cannot affect the sum. We ignore the fact that a sum of small terms might be significant. This, then, defines the truncation point. Let m be the number of the largest term in the sum, k the number of terms to be used, and h the number of decimal digits in the machine word. Then for a given k, the largest absolute value of the argument z that can be used to compute g' is given as

$$|z^{3}|^{m} d_{m} = |z^{3}|^{k} d_{k} \cdot 10^{h} .$$
⁽⁵⁸⁾

The power of ten can be replaced by 2 raised to a power of the number of binary bits in the computer word if preferred. The coefficient d of eq (57) is used. Each of the other three should also be tried, to find the smallest number of the group for a given k. Equation (58) can be solved for |z|, giving

$$\log |z| = (\log d_{\rm b} - \log d_{\rm m} + h)/(3m - 3k) .$$
(39)

(50)

A simple computer program given in appendix C will find |z| for each value of k from 1 up to the maximum number of terms desired. The largest term, m, is easily determined because from one k to the next m will remain the same or increase by 1, so it is only necessary at each step to check term m+1 to see if it is larger than term m.

The FORTRAN subroutine HANKEL given in appendix A uses the above power series method to compute h_1 and h_2 for small arguments. The coefficients a, b, c, and d are given in lists by that name. The truncation points are given in the list called ZMLA2, which lists values of $|z|^2$ determined by eq (59) or the three similar equations.

ASYMPTOTIC SERIES EXPANSION USING CONTINUED FRACTIONS

When the argument z falls outside the curve in figure 4, h_1 and h_2 can be computed more efficiently or more accurately by asymptotic series than by power series methods. Reference 11 gives information on branch cuts and regions of validity of the two forms of the asymptotic solution (Stokes' phenomenon). Here we will give computing formulas that comply with these requirements, without discussing them further.

Since a given expansion is valid in one or more quadrants, we choose complete quadrants as regions. For z in quadrants 1, 3, or 4 use

$h_2(z) \sim$	$n_2(z) \sim \exp(5\pi i/12) F_2(z)$				(60		

$$h_2(z) \sim \exp(-\pi i/12) G_2(z)$$
 (61)

For z in quadrant 2 use

 $h_2(z) \sim \exp(5\pi i/12) F_2(z) + \exp(11\pi i/12) F_1(z)$ (62)

$$h'_{2}(z) \sim \exp(-\pi i/12) G_{2}(z) + \exp(-7\pi i/12) G_{1}(z)$$
 (63)

For z in quadrants 1, 2, or 4 use

$$h_1(z) \sim \exp(-5\pi i/12) F_1(z)$$
 (64)

$$h'_{1}(z) \sim \exp(\pi i/12) G_{1}(z)$$
 (65)

For z in quadrant 3 use

 $h_1(z) \sim \exp(-5\pi i/12) F_1(z) + \exp(-11\pi i/12) F_2(z)$ (66)

$$h'_{1}(z) \sim \exp(\pi i/12) G_{1}(z) + \exp(7\pi i/12) G_{2}(z)$$
 (67)

The four auxiliary functions follow:

$$F_1(z) = K z^{-1/4} \exp(2i z^{3/2}/3) \sum_{m=0}^{M} C_M X^m$$
 (68)

$$F_2(z) = k z^{-1/4} \exp(-2i z^{3/2}/3) \sum_{m=0}^{M} C_m Y^m$$
 (69)

$$G_1(z) = k z^{1/4} \exp(2i z^{3/2}/3) \sum_{m=0}^{M} D_m X^m$$

$$G_2(z) = k z^{1/4} \exp(-2i z^{3/2}/3) \sum_{m=0}^{M} D_m Y^m$$
 (71)

where X and Y equal \mp i $z^{-3/2}$ respectively, and

$$K = 2^{1/3} 3^{1/6} \pi^{-1/2} = 0.853667218838951$$

The coefficients C_m and D_m are again computed by recursion relations where $C_0 = D_0 = 1$:

$$C_{\rm m} = C_{\rm m-1} \left[9 \left(2m-1\right)^2 - 4\right]/48m$$
 (72)

and

$$D_{m} = D_{m-1} \left[9 \left(2m-1\right)^{2} - 16\right]/48m .$$
⁽⁷³⁾

Square roots of z are to be taken so that the real part of the root is always positive and the imaginary part has the same sign as the imaginary part of z. This applies also to fourth roots. The three-halves power is obtained as the product of z and its square root.

The summations in eq (68) - (71) can be done as indicated or evaluated by continued fractions. When done as indicated they are asymptotic series, and care must be taken to truncate them at the term of smallest magnitude, if this term is reached, because adding more terms will reduce the accuracy. Since the largest term in these series will always be 1, the series can be truncated if the terms become less than 10^{-h} in magnitude, where h is the number of decimal digits in the computer word.

Continued Fraction Expansion

The method of continued fractions is more effective in evaluating these asymptotic series, and it is used in subroutine Hankel in the FORTRAN program in this report. The coefficients are stored in lists entitled C4, C5, D4, and D5. In the remainder of this section the continued fraction technique is presented, along with the method of determining coefficients.

The continued fraction has the form

$$F(x) = b_0 + \frac{a_1}{x + b_1 + \frac{a_2}{x + b_2 + \dots}}$$

(74)

(70)

It is to be used to evaluate a polynomial

$$P(x) = \sum_{m=0}^{M} C_m X^m .$$
 (75)

This polynomial can represent any of eq (68) - (71). One of three standard forms for continued fractions, this form is used because it has two coefficients at each stage and therefore is equivalent to an asymptotic series of twice as many terms. This reduces by half the number of divisions required. Since complex divisions are lengthy, requiring six real multiplications and two divisions, this is the only standard form of the continued fraction that can compete in computer time with the asymptotic series.

The coefficients a_i and b_i of eq (74) must be determined from the coefficients C_m . The usual technique is to express P as a rational function, then use the continued fraction to evaluate the rational function. The determination of the coefficients can be done in these two steps or by a second method which goes directly from power series to continued fraction coefficients. The second method is preferable because the loss of accuracy is more in the first. But since the first method is more easily understood, each method will be given; a computer program is included in appendix C which will determine coefficients by the second method.

Let M in eq (75) be an even number so that 2N = M. (An additional unnecessary term of the series can always be used.) The rational function will have the form

$$R(x) \approx k \sum_{i=0}^{N} \hat{e}_{i} x^{i} / \sum_{i=0}^{N} \hat{f}_{i} x^{i}$$
, (76)

where $\hat{e_0} = \hat{f_0} = 1$ and $k = C_0$. The coefficients $\hat{e_i}$ and $\hat{f_i}$ are evaluated from a set of linear equations which can be described by displaying a particular case. For N = 3 they are as follows:

						_	-	-		The second second	-
1000	-1	0	0	C ₀	0	0		kê ₁	a stê jas	C ₁	
	0	-1	0	с ₁	c ₀	0		$k \hat{e}_2$		C ₂	
	0	0	-1	с ₂	с ₁	C ₀		$k \hat{e}_3$	_	C ₃	
	0	0	0	С ₃	с ₂	с ₁		\hat{f}_1		C ₄	
	0	0	0	C ₄	C ₃	с ₂		\hat{f}_2		C ₅	19
L	0_0	0	0	с ₅	C ₄	C3_		\hat{f}_3		C ₆	

(77)

With e_i and f_i thus determined, R(x) is equivalent to P(x) through the first M + 1 terms. R(x) can now be evaluated exactly (except for round-off error) using a continued fraction of the form F(x) of eq (74).

Rather than R(x), however, a similar expression in y = 1/x is the form that is well suited to evaluating asymptotic series. This expression is obtained by dividing each term of R(x) by X^N . The order of the coefficients can now be reversed and a simple algebraic operation can yield a value of 1 for each of the two initial coefficients and a new value for k. We will call this new rational function with renamed coefficients R(y). It will have the form of eq (76) but different coefficients, say e and f instead of \hat{e} and \hat{f} .

The coefficients a_i and b_i are determined from e_i and f_i by a recursive formula which involves constructing an $n \times n$ triangular matrix Q with elements $q_{i,j}$ as follows:

 $b_0 = e_0$

 $q_{1,i} = (e_i - e_0 f_i)/a_1$ $i = 1, 2, \dots, N$,

where $q_{1,1} = 1$, giving a_1 , and

$$b_1 = f_1 - q_1 2 \cdot$$

The second row:

$$q_{2i} = (f_i - q_{1i+1} - b_1 q_{1i})/a_2$$
 $i = 2, 3, ..., N$,

where $q_{2,2} = 1$, giving a_2 , and

 $b_2 = q_{1,2} - q_{2,3}$.

Elements outside the matrix are assigned a value of zero. The remaining rows for m = 3 to N are as follows:

$$q_{m,i} = (q_{m-2,i} - q_{m-1,i+1} - b_{m-1} q_{m-1,i})/a_m$$

$$i = m, m+1, ..., N$$
,

where $q_{m,m} = 1$, giving a_m , and

 $b_m = q_{m-1,m} - q_{m,m+1}$.

The second method determines the continued fraction coefficients ai and bi directly from the asymptotic series coefficients ci. This method is preferable to the first because the loss of accuracy in inverting the matrix in eq (77) can be more than the loss in this second method.

It has been pointed out* that the second method is probably a variant of the Viskovakoff algorithm described by Khovanskii (ref 12) and as such is unstable – subject to accumulation of errors. However, it is sufficiently stable to obtain the required coefficients.

12. The Application of Continued Fractions and their Generalizations to Problems of Approximate Analysis, by AN Khovanskii; a monograph in Russian, 1956.

^{*}Private communication with AN Stokes, CSIRO, Wembley, Western Australia.

The coefficients are derived as follows. The well-known recursive relations that give the Nth stage of a continued fraction as a rational function are used (ref 13).

$$F_{N}(y) = A_{N}(y)/B_{N}(y) , \qquad (78)$$

where

$$A_{N} = \sum_{i=0}^{N} e_{i} y^{i}$$

$$= (y + b_{N}) A_{N-1} + a_{N} A_{N-2}$$
(79)
$$B_{N} = \sum_{i=0}^{N} f_{i} y^{i}$$

$$= (y + b_{N}) B_{N-1} + a_{N} B_{N-2} ,$$
(80)

in which $A_{-1} = 1$, $A_0 = b_0$, $B_{-1} = 0$, and $B_0 = 1$. Again y = 1/x. The long division indicated in eq (78) is then carried out, giving a quotient in terms of a_i , b_i , and y that can be equated, term by term, to the first 2N-1 terms of the asymptotic series.

The long division is carried out with A_N and B_N written in descending powers of y. The quotient is then in descending powers of y or ascending powers of x. Fortunately, the first 2N+1 terms determined for any N are identical to the same initial terms for any larger value of N. This will be proven later. The first few equations obtained from the division are as follows:

$$b_{0} = C_{0}$$

$$a_{1} = C_{1}$$

$$-a_{1} b_{1} = C_{2}$$

$$a_{1} \left(b_{1}^{2} - a_{2} \right) = C_{3}$$

$$a_{1} \left(2 a_{2} b_{1} - b_{1}^{3} + a_{2} b_{2} \right) = C_{4}$$
(81)

From these equations a_i and b_i can be determined, since the coefficients C_i are known. However, a simpler method is available.

The long division indicated in eq (78) can be carried to 2N+1 valid places; but beyond N+1 places, terms from the original dividend are no longer entering the remainder. Therefore terms in the later part of the quotient have a simplified form. Since term n+1 of

^{13.} Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, ed by M Abramowitz and IA Stegun; National Bureau of Standards Applied Mathematics Series, vol 55, p 19, 1964.

the quotient is equal to the nth asymptotic coefficient, designate it C_m . Note that the C's are numbered from 0 to N. Let the coefficient of y^m in B_n be $B_{n,m}$. Then

$$C_{N+j} = -\sum_{i=1}^{N} B_{N,N-i} C_{N+j-i} , \qquad 1 \le j \le N .$$
 (82)

Here the C's are numerical constants. The unknowns, the a's and b's, are in the terms of B. Suppose that these unknowns have been determined up to n = N-1. Then eq (82) will contain two unknowns, a_N and b_N . By using eq (82) for j = N-1 and N, the unknowns can be evaluated. The index N can then be increased by 1 and the process repeated. The process can start with N = 2 if a_1 , b_0 , and b_1 are provided, but these are easily determined from eq (81). The terms of B_N are determined from eq (80), which gives for each term

$$B_{n,m} = B_{n-1,m-1} + b_n B_{n-1,m} + a_n B_{n-2,m}$$
(83)

Any $B_{n,m}$ is zero if m is greater than n.

When j = N-1 is used in eq (82) in the process described above, the coefficient of the (2N-1) power of x is being evaluated. This term is expected to contain a_N and b_N , but – as will be proven later – because the coefficient of b_N is zero, a_N is the only unknown in a linear equation and can be easily evaluated. The next term determined with j = N contains a_N and b_N , but now only b_N is unknown and is easily evaluated.

As an example, the C_n 's through n = 10 are listed in table 1. These are the asymptotic series coefficients given by eq (72). The corresponding a_n 's and b_n 's as determined above are also listed. A more complete list of the a's and b's can be obtained from the FORTRAN program in appendix C.

n	c _n	^a n	b _n
0	1.	0	1.
1	0.10416	0.10416	-0.80208
2	0.08355	-0.58764	-2.28555
3	0.12823	-2.29072	-3.77864
4	0.29185	-5.11525	-5.27462
5	0.88163	-9.06285	-6.77193
6	3.32141		a) sent antique l'été buic
7	14.99576	and of the dustriant line	berna i na ser en esta de la terres
8	78.92301	And	·····
9	474.45154	Encentric Atth Westmann day	principalities in the start?
10	3207.49009	to a start of the rest of the start of	

Table 1. Asymptotic series coefficients, C_n , and the corresponding continued fraction coefficients, a_n and b_n .

A FORTRAN program to compute the continued fraction coefficients for the series given by eq (72) is given in appendix C. This program can be easily modified to determine the other set.

Two Proofs

In this section proofs will be given of two facts used in the previous section. Following this, the number of terms required, the accuracy, and similar topics will be discussed. To prove that the first 2N+1 terms of the quotient A_N/B_N are equal to the same terms when N is a larger integer, use long division on eq (79) and (80) to obtain

$$A_{N}/B_{N} = A_{N-1}/B_{N-1} + a_{n} (A_{N-2} B_{N-1} - A_{N-1} B_{N-2})/(B_{N} B_{N-1}) .$$
(84)

If the first quotient on the right is to have terms equal to the quotient on the left up through term 2N-1, the remainder must have no terms with y to a higher power than -(2N-1). The final divisor, $B_N B_{N-1}$, contains y to the (2N-1) and lower powers. Therefore, the proof is complete if the numerator of the remainder is a constant. To show this, use eq (79) and (80) to evaluate B_{N-1} and A_{N-1} ; it can be shown that

$$A_{N-2} B_{N-1} - A_{N-1} B_{N-2} = -a_{N-1} (A_{N-3} B_{N-2} - A_{N-2} B_{N-3})$$
$$= (-1)^N a_{N-1} a_{N-2} \dots a_1$$

The right-hand product is obtained by repeatedly applying the middle result. The product of a's is a constant, completing the proof.

The second proof required is that in the quotient of A_N/B_N , C_{2N} (the coefficient of y^{-2N}) will contain no a_i or b_i to higher than term N and C_{2N+1} (the coefficient of y^{-2N-1}) will involve no a_i to higher than term N+1 and no b_i to higher than term N.

The first part is intuitively obvious. Since from the preceding proof C_{2N} will be the same when derived from the ratio A_X/B_X for any x as long as it is N or greater, we need consider only the case where x is N. But since from eq (79) and (80) A_N and B_N contain no a's or b's of greater than term N, C_{2N} cannot contain a's or b's of higher terms.

By the same argument C_{2N+1} can contain no a's or b's to higher terms than N+1. There remains to be proven only that b_{N+1} cannot exist in C_{2N+1} or that its coefficient, which we will call E, is zero. Applying eq (82) for N+1 and j = N gives

$$C_{N+1+N} = -\sum_{i=1}^{N+1} B_{N+1,N+1-i} C_{N+1+N-i}$$

E, the coefficient of b_{n+1} in this expression from eq (83), takes the form

$$E = -\sum_{i=1}^{N+1} B_{N,N+1-i} C_{2N+1-i}$$
.

But by choosing j = N in eq (82) we see that terms 1 to N for C_{2N} equal terms 2 to N+1 in E, so

$$E = -B_{N,N}C_{2N} + C_{2N}$$

However, since $B_{N,N}$, the coefficient of y^n in B_n , is always 1 by eq (80), E = 0. Therefore b_{N+1} does not exist in C_{2N+1} .

Number of Terms

The number of terms or stages to use in the continued fraction was arrived at by a trial and error process. For a given number of terms, a real positive argument was decreased until the accuracy began to drop. The magnitude just before this drop was considered to be the optimum point to increase the number of stages by one. Because the argument to the continued fractions is $z^{3/2}$, we took the larger of the magnitudes of the real and imaginary parts of $z^{3/2}$ as the test number. This number is then compared to the 3/2 power of the points determined along the real axis by trial and error.

The above method appears to work well although it involves no thorough understanding of the way complex numbers affect the successive convergents of a continued fraction. Table 2 shows the points down to which a given number of stages gives full accuracy for positive real arguments and lists the 3/2 power of these numbers as used in the FORTRAN program list called ZMLA5.

Division Lines

The power series method is now to be used for small arguments and the continued fraction method for large arguments. The exact dividing line between them is needed. The division line of figure 4 was arrived at by computing the functions along rays from the origin, using both power series and continued fractions. The number of decimal places to which the functions determined by the two methods agree tends to reach a maximum at some distance from the origin along each ray. At distances short of this maximum we can assume that the continued fraction method is less accurate than the power series. At distances beyond the maximum, the power series is assumed to be less accurate. The maximum therefore indicates the ideal place to change from one method to the other if the decision is to be based solely on accuracy. This method was used to determine figure 4.

A complication arises, however. Along certain rays from the origin, h_1 and its derivative reach a maximum number of places at very different distances from h_2 and its derivative. The principal problem is at $\pm 60^{\circ}$ but persists from about 30° to 90°. At 60°, h_1 is small in magnitude and h_2 is large. The power series method cannot compute the small values accurately due to loss in accuracy in subtraction in eq (48). The accuracy of the continued fraction for h_2 is poor at 60° because eq (69) becomes a nonalternating series and continued fraction approximations are not known to improve the accuracy of nonalternating asymptotic series as they do for alternating series.

A reasonable solution to this problem is to compute h_1 by continued fractions and h_2 by power series for arguments at these angles and magnitudes from 4 to 10. However, as will be shown later, the above solution has not been employed at this time since this area is not of great importance for normal mode computations. Instead, the argument was chosen
Number of Stages	Real Argument x	Program Test Value $\frac{x^{3/2}}{x^{3/2}}$	
1	10 ⁶	10 ⁹	
2	80	715.0	
3	35	207.0	
4	22	103.0	
5	13	47.0	
6	11	36.4	
7	9	27.0	
8	8	22.6	
9	7	18.5	
10	6.5	16.6	
	6	14.7	
12	5.8	14.0	
13	5.5	12.9	
14	5.3	12.2	
15	5.1	11.5	
16	4.9	10.8	
17	4.5	9.5	
18	4.4	9.2	

Table 2. Cut-off points for determining the number of stages in the continued fractions.

that gave equivalent accuracy for the two methods. Along 60° this minimum accuracy is 9 decimal places.

The following relationship exists between h_1 and h_2 for positive and negative values of the imaginary part of the arguments:

$$h_1(z^*) = [h_2(z)]^*$$
,

where the * means complex conjugate. Thus, the above discussion at 60° can be translated to -60° . Also, the functions actually need to be computed only in quadrants I and II. They could then be evaluated in quadrants III and IV by the above relationship. The above relationship explains the symmetry of figure 4 about the real axis.

COMPARATIVE ACCURACY

The accuracy of the three methods – power series, asymptotic series and continued fractions – has been determined on a CDC computer with 48 bits or 14.4 decimal places of accuracy in the floating point word. Since this differs from the double precision word length of 60 bits or 18.1 decimal places that applies to the preceding part of this report, these results are for comparative and illustrative purposes only.

Accuracy is determined by computing the functions and either comparing the answers for the several different computing methods or computing the wronskian. The wronskian is a constant given by the relationship

$$h_1 h'_2 - h_2 h'_1 = -1.45749544104i = -i96^{1/3}/\pi$$
 (85)

The wronskian will determine the accuracy of the functions if it can be computed without loss of accuracy. If the two products in it are large, though, accuracy will be lost in the subtraction. This generally happens for arguments near the negative real axis. Here accuracy must be determined by comparing answers from different methods. The accuracy of the functions and their derivatives will generally be about equal.

Figure 5 illustrates the accuracy that is obtained in different parts of the complex plane of the argument, z, by using the power series method. On the inner contour, the functions h_1 and h_2 and their derivatives have 12 places of accuracy. On the outer contour, the accuracy is 11 places. As expected, the accuracy is best for arguments of small magnitude. The accuracy remains best in directions from the origin in which the functions are large in magnitude. This is because less accuracy is lost in subtraction. Accuracy must be lost when individual terms of the series are large but the sum is small.

Figure 6 shows accuracy contours for the asymptotic expansion with both the direct and continued fraction evaluation of the series. Here, the best accuracy is obtained for large arguments, and accuracy decreases toward the origin. As can be seen, each of the two methods is better in some directions from the origin. The choice of methods then depends upon which directions are of most value to the normal mode program. The dots on the figure show the locations at which the functions were evaluated in a typical surface duct run. Although arguments can lie anywhere in the plane, most of them follow this pattern. They lie just above the negative real axis and in a narrow angle above the positive real axis. The continued fraction method is distinctly better on this positive side. Since computing time also favors the continued fraction method, it is clearly the method to use.

If the 12-place accuracy contour from figure 6 lies inside that for figure 5 at some angle from the origin, 12 places can be obtained at any range along this angle by using either power series or asymptotic expansion in the interval of overlap. If the asymptotic expansion contour lies outside the other, there is an interval in which 12 places cannot be obtained. Only some lesser number of places can be obtained in this interval. These contours apply when both functions and their derivatives are all computed by a single method. As mentioned earlier, increased accuracy could be obtained in some areas by computing the two functions by different methods.

Figure 5. Locus of arguments for which the power series evaluation of the modified Hankel functions gives 12 and 11 decimal places of accuracy for a computer word length of 14.4 decimal places.

Figure 6. Locus of arguments for which the direct and continued fraction evaluation of the asymptotic series gives 11 and 12 decimal place accuracy. The arguments at which the modified Hankel functions were evaluated in a typical normal-mode run are shown.

MODE FOLLOWER PROGRAM

Appendix D lists the Mode Follower Program in FORTRAN. It is not a part of the general normal mode program, but is related in that it uses some parts of the general program. The purpose of the mode follower is to trace a given eigenvalue as some parameter is varied. This parameter is usually frequency, but any profile parameter can also be varied. The eigenvalues at a given set of parameters are discrete points. By permitting the parameter to vary, the eigenvalues become a set of lines, and this often clarifies their behavior at the fixed points. Figures 7-9 illustrate this.

Figure 7 is a sound speed profile consisting of two ducts. Figures 8 and 9 show the real and imaginary parts of some eigenvalues of the profile over a range of frequencies. The imaginary parts are expressed as mode attenuations. The figures show a region where both ducts are exerting an influence on the eigenvalues. The broken lines show the location of eigenvalues for a profile that consists of only the upper duct of figure 7. Considerable time could be spent studying the interaction between the two ducts, but since the purpose here is to illustrate eigenvalues as functions of a parameter, only a brief description will be given.

Modes are numbered by the real parts of their eigenvalues. This numbering is consistent with the number of beats or changes of π in the phase of the depth functions. Thus the eigenvalue of a mode numbered 1 in a profile consisting of only the upper duct lies exactly over the eigenvalues of a mode in the double duct in figures 8 and 9, but this mode in the double duct changes number each time it crosses the real part of another mode. The depth function actually gains an additional beat each time this happens. The background of modes that are being crossed consists of the higher order, untrapped modes associated with the lower duct.

Mode 2, of the upper duct only, does not have a single mode in the double duct that overlies it exactly. Instead, a mode attempts to follow it at frequencies above 1350 Hz. Below this frequency, successive modes follow its path for short intervals. This interplay between modes occurs when mode 2 of the upper duct is in some sense equally as untrapped as the modes associated with the lower duct.

The imaginary parts of the modes follow similar patterns; but because the mode numbering is not determined by the imaginary parts, the mode numbers sometime jump from one line to another. An important feature of these two plots is that if the real parts of the eigenvalues cross, the imaginary parts do not; and vice versa. Thus two eigenvalues do not tend to become equal at a point which would make them degenerate.

The mode follower program will tend to follow the continuous curves. Thus if started in the right direction on mode 59 at 1450 Hz, it will follow along the continuous mode which becomes successively mode 58, 57, 56, and 55.

Figures such as 8 and 9 can be drawn by computing the eigenvalues at a sufficient number of frequencies to determine the lines. The mode follower does this for a given eigenvalue while adjusting the step size so the mode will not be lost, or so the program will correctly follow the mode. The step size is permitted to become large where the eigenvalue can be approximated by a parabolic curve, but it shortens when extrapolation to the next point becomes less accurate.

Figure 9. The imaginary parts of the modes whose real parts are shown in figure 8 expressed as mode attenuation. To avoid confusion, they are not shown across the full frequency interval.

When frequency is the variable parameter, the group velocity of the mode can be computed easily since a numerical derivative can be computed. Group velocity is given by the relationship

$$C_{g} = d\omega/d (\text{Re k})$$
$$\cong \Delta\omega/\Delta (\text{Re k})$$
$$\cong -\Delta f v^{2}/f \Delta v ,$$

where k is the horizontal wave number of the mode and v is the real phase velocity. The mode follower prints this value out at each step, along with the eigenvalue.

IMPLEMENTATION OF THE MODE FOLLOWER

The mode follower was originally implemented for a two-layer normal mode which differed from the n-layer program in that the derivative dG/dv of the characteristic equation was evaluated along with G. The iteration for roots of G was thus Newton-Raphson and is given by the relationship

$$v_{i+1} = v_i - G/G'$$
 (86)

This is simpler than the secant iteration of eq (15), in which G' must be evaluated numerically. Because of the simpler iteration, an effective scheme for mode following was available. Since considerable effort was required to develop a similar scheme for the n-layer case, the two-layer mode follower will be briefly described to serve as an introduction to the n-layer case.

The two-layer mode follower employs one iterative step of eq (86) at each point where G is evaluated. Thus, a root that is inexact but sufficiently exact is obtained. The original estimate is obtained by extrapolating from the three most recent roots. If this estimate is sufficiently close to the true root, the single iterative step will make a small correction, G/G', that will bring the estimate very close to the true root. By using the size of this correction to control the step size, the program is self-regulating. The program works well when a permissible value of G/G' of 10^{-6} to 10^{-4} is used. Outside this interval the step size is either doubled or halved.

The multiple-layer program differs from this in several details. The extrapolation from the previous three points is done not only for the phase velocity but also for the numerical derivative,

$$D^{-1} = \Delta v / \Delta G.$$

Lagrange three-point interpolation is used, given by the form

$$\mathbf{v}(\mathbf{x}) = \frac{\mathbf{v}(\mathbf{x}_1) \left(\mathbf{x} - \mathbf{x}_2\right) \left(\mathbf{x} - \mathbf{x}_3\right)}{\left(\mathbf{x}_1 - \mathbf{x}_2\right) \left(\mathbf{x}_1 - \mathbf{x}_3\right)} - \frac{\mathbf{v}(\mathbf{x}_2) \left(\mathbf{x} - \mathbf{x}_1\right) \left(\mathbf{x} - \mathbf{x}_3\right)}{\left(\mathbf{x}_1 - \mathbf{x}_2\right) \left(\mathbf{x}_2 - \mathbf{x}_3\right)} + \frac{\mathbf{v}(\mathbf{x}_3) \left(\mathbf{x} - \mathbf{x}_1\right) \left(\mathbf{x} - \mathbf{x}_2\right)}{\left(\mathbf{x}_1 - \mathbf{x}_3\right) \left(\mathbf{x}_2 - \mathbf{x}_3\right)} ,$$
(87)

where x is the new value of the parameter that is being varied (usually frequency) and x_1 , x_2 , and x_3 are the three previous values, x_1 being the most recent. To extrapolate the derivative, v is replaced by D^{-1} in eq (87). Both quantities are complex numbers.

The determinant is now evaluated at this new phase velocity to give a value G_0 . Next a corrected value of phase velocity, v_0 , is obtained:

$$v_0 = v - G_0 D^{-1}$$
 (88)

In the two-layer case, the size of the correction, GD^{-1} , is used to control the step size. Because the numerical derivative is less precise, we evaluate G once more at this new position, obtaining G_1 . A new numerical derivative is next calculated:

$$D_0^{-1} = (v_0 - v)/(G_1 - G_0)$$

This derivative is now compared with the extrapolated value to determine whether the step size should be changed. To do this an error

$$E = |1 - D_0/D|^2$$

is computed. Good results have been obtained by keeping E between 10^{-5} and 10^{-2} . If E becomes larger than this, the step size is halved and the extrapolation is tried again. Should halving the step size five times fail to obtain a value of E less than 10^{-2} , the mode is presumed to be lost and the program halts.

If E is less than 10^{-2} , the step is successful and the stored values are updated for the next step. Before v is stored, though, the iterative step of eq (88) is applied one more time to obtain a more precise value of v. This requires little extra effort because the quantities G_1 and D_0^{-1} are already available.

If the error E is less than 10^{-5} , the next step size is doubled.

It is possible for the extrapolation to be too successful. That is, if v is very near the true root, G₀ and Δv will be very small. The numerical derivative may then be inaccurate. Therefore, before the error term E is computed, a quantity

$$F = |v/\Delta v|^2$$

is computed. If F is greater than 10^{28} , the extrapolated derivative is used rather than the computed derivative and the program proceeds to the next step. If F is greater than 10^{34} , the step size is doubled before proceeding to the next step.

The other principal part of the program is the initialization which must evaluate v at three values of x to obtain the numbers needed for the first extrapolation, eq (87).

INPUT AND OUTPUT

The first input card contains the maximum number of steps allowed, the limits applied to E and F, and keys which control both the amount of detail in the printout and whether the profile parameters are to be read in or retained from the previous run. Default values are supplied when these items are left blank. Next the profile parameters are read in. These are an older style and only permit specification of the absorption loss at the top of a layer. The sound speed gradient is assumed to be real at the top of any layer.

A final card indicates which variable – frequency, sound speed, depth, gradient, absorption, or density – will be varied, by specifying a number called nx in the program, from 1 to 6. The next number, ny, specifies which layer the variable will be in. This layer number is not needed if frequency is selected. A third number, nz, indicates, if zero, that the profile will remain continuous as the selected parameter is varied. If nz is not zero, the selected parameter moves alone without a compensating motion in other profile parameters. The card next gives the initial and final value of the parameter to be varied and the initial step size. Finally, the particular mode to be followed is indicated by giving an approximate phase velocity and an initial step size. These must be chosen such that the subsequent iteration will converge on the correct mode.

The principal output of this program is the print statement at line 314. Each line of output contains the value of the parameter being varied, the complex phase velocity, the determinant G, the derivative D^{-1} , the error term E, the mode attenuation, the mode group velocity (if frequency is the parameter being varied), and the step number. After the final step, the profile in its final form is printed out.

CONCLUSIONS

1. An effective program for computing propagation loss in a layered ocean by normal modes has been developed. Complete documentation for the program is contained herein.

2. Sediment layers are modeled as fluids in which densities, sound speeds, and absorption can be specified. This permits a complete wave solution for bottom reflected sound energy.

3. A continued fraction technique for evaluating asymptotic series is shown to give superior results in evaluating the auxiliary functions required in this program, the modified Hankel functions of order 1/3.

4. A mode follower program given here is useful in tracing eigenvalues. Such traces are needed to understand the eigenvalue structure.

RECOMMENDATIONS

1. Improve the mode locating ability of this normal-mode program to make it selfcontained. It currently requires user interaction to locate eigenvalues.

2. Investigate methods to incorporate the effect of rough boundaries into this program.

REFERENCES

- The Bilinear Modified-Index Profile, by WH Furry, in Propagation of Short Radio Waves, DE Kerr, ed; MIT Rad Lab series, vol 13, p 140–168, McGraw-Hill, New York, 1951.
- 2. Navy Underwater Sound Laboratory Report 111, Theory of the Anomalous Propagation of Acoustic Waves in the Ocean, by HW Marsh, 1950.
- Normal-Mode Theory Applied to Short-Range Propagation in an Underwater Acoustic Surface Duct, by MA Pedersen and DF Gordon; J Acoust Soc Am, vol 37, p 105– 118, January 1965.
- 4. Naval Air Development Center Report NADC-72002-AE, Normal Mode Solutions and Computer Programs for Underwater Sound Propagation, by CL Bartberger and LL Ackler, 4 April 1973.
- 5. A Normal Mode Theory of an Underwater Acoustic Duct by Means of Green's Functions, by RL Deavenport; Radio Sci, vol 1, p 709-724, 1966.
- Analytic Description of the Low-Frequency Attenuation Coefficient, by WH Thorp; J Acoust Soc Am, vol 42, p 270, 1967.
- Some Effects of Velocity Structure on Low-Frequency Propagation in Shallow Water, by AO Williams; J Acoust Soc Am, vol 32, p 363-365, March 1960.
- 8. Sound Attenuation as a Function of Depth in the Sea Floor, by EL Hamilton; J Acoust Soc Am, vol 59, p 528-535, March 1976.

- 9. Sound Propagation in a Channel with Lossy Boundaries, by HP Bucker; J Acoust Soc Am, vol 48, p 1187-1194, November 1970.
- 10. The Connection Between Normal Modes and Rays in Underwater Acoustics, by KM Guthrie; J of Sound and Vibration, vol 32 no 2, p 289-293, 1974.
- Tables of the Modified Hankel Functions of Order One-Third and their Derivatives, Harvard University Computation Laboratory; Harvard University Press, Cambridge MA, 1945.
- 12. The Application of Continued Fractions and their Generalizations to Problems of Approximate Analysis, by AN Khovanskii; a monograph in Russian, 1956.
- Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, ed by M Abramowitz and IA Stegun; National Bureau of Standards Applied Mathematics Series, vol 55, p 19, 1964.

APPENDIX A: NORMAL MODE PROGRAM IN FORTRAN

This program consists of the main program and seven subroutines. The main program handles the input and output and performs much of the computation. This includes profile preparation, mode search, determination of depth function coefficients, normalization, computation of depth functions, and summation of modes. Auxiliary functions are performed by the subroutines SETUP and DET, which set up the determinant, then evaluate it. This is the determinant from which eigenvalues are determined. The subroutine HZERO determines the Hankel functions of order zero, second type, which gives the range dependence of the modes. Only a single term of the asymptotic expansion is needed for this function.

Subroutine HANKEL evaluates the modified Hankel functions of order 1/3, by which the depth dependence of the modes is expressed. The majority of computing time is usually expended in this subroutine. Subroutine CFR is used by subroutine HANKEL to evaluate continued fractions. Subroutine RCOEF evaluates and prints reflection coefficients when they are requested.

```
THIS IS THE MAIN PART OF NLAYNM
 C
        IMPLICIT DOUBLE PRECISION (A-H, O-Z)
        DOUBLE PRECISION LAMBDA, LAMBDI
        INTEGER COL
       REAL R ATTEN, T RE, RX
       DIMENSION LOSPCH(5,25)
       COMMON /HAN/ H2R,H2I,H1R,H1I,H2PR,H2PI,H1PR,H1PI,R
       COMMON/INPUT/ Z(12), N, OMEGA, V, VI, CON(12), GSQ(12),
      1 CAY(12), LAMBDA, LAMBDI, G(12)
      2, RHO(12), GI(12), G SQI(12), CAYI(12)
       COMMON /EXPO/ EXSUM, CNTR, RATIO(25)
       COMMON/DETMNT/ A(25,4), Q(25,4)
       COMMON/PARTS/ ZT(12), ZTI(12), ZB(12), ZBI(12)
      COMMON/REFL/ AF(12,200), AG(12,200), BF(12,200), BG(12,200),
2 EIGEN(350), EIGENI(350), B (25,4), BI(25,4), CB(12), CBI(12),
      3 CAYSQ(12), CAYSQI(12), NN
       DIMENSION D(350), DI(350), F(100), FI(100), HZERO2(350),
      * DA(350), SRES(350), GAMMAI(12), BLPK(12),
      4 HZER2I(350), DPK(12), GCU(12), GCUI(12), CI(12),
      3 PHASE V(350), PHASI V(350), UU(2000), UUI(2000)
COMMON /LIMIT/ TLIM, EXPONT, SLIM
       DIMENSION LOSS(101)
       DIMENSION C(12), DEPTH(52), DBLOSS(350), COL(120),
      1CONTR(10), EF(2), FMAG(350), FANG(100),
      2GAMMA(12), JSMBL(10), JCOUNT(5), JCOU(5), LEVEL(41), PLEV(5), RLOSS(100)
      3 , RLOS(101), RECVRS(51), TEST(3),
                                                  ING(11)
       EQUIVALENCE (FF, EF(1)), (DEPTH(1), SOURCE), (DEPTH(2), RECVRS(1)),
      1
                                 (RLOS(2), RLOSS(1))
       COMMON /AHZERO/ HZEROR, HZEROI
       DATA ( CONTR(I), I=1,4) /110.D0,95.D0,80.D0,-1000.D0/,
     1 (J SMBL(I), I=1,3) /1H1,1H*,1H8/,
*(ING(I), I = 1,10)/1H0,1H1,1H2,1H3,1H4,1H5,1H6,1H7,1H8,1H9/,
      2
       (TEST(I), I=1,3) /.2D0,1.D0,5.D0/
      TLIM = 25.
       SLIM = -8.54988
C READ IN PARAMETERS
1 READ 11, K1, K2, K3, K4, K5, K6, K7, K8, K9
C KEYS& 1-DEPT FN PRINTOUT, 2-LOSS PRINTOUT, 3-REFLECTION COEFF PRINTOUT
C 4-CHANGE CONTOURS, 5-CONTINUE MODES
      FORMAT (1014)
 11
      PRINT 13, K1, K2, K3, K4, K5, K6, K7, K8, K9
      FORMAT (GH1KEYS , 1014)
 13
      IF (K1 .LT. 7) GO TO 5
      READ 11, M
      READ 434, (SRES(I), I = 1, M)
 434
      FORMAT (5D16.7)
      IF (K8 .NE. 1) GO TO 8
 5
      READ 20, T LIM
      SLIM = -DCBRT(TLIM**2)
      PRINT 30, TLIM, SLIM
8
      EXPONT = DEXP((TLIM + TLIM) / 3.)
      K6 = K6 + 1
      INSUR = 0
      IF (K2 .LT. 10) GO TO 16
      K2 = K2 - 10
      INSUR = 1
```

2

3

4

5

6

7

8

9

10

11

12

13

14 15 16

17

18

19

20

21 22

23

24

25

26

27

28

29

30

31

32 33

34

35

36

37 38 39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

57	16	MPCH = 0
58		IF (K5 .LT. 10) 00 10 17
59		$K_{5} = K_{5} - 10$
60		MPCH = 1 GO TO 3
61	17	P = A D = 20 (CONTR(I), I = 1,9)
62		CONTR(10) = -1000.00
63		BFAD 4. (J SMBL(I), I = 1,9)
64	4	FORMAT (9A1)
65	3	READ 10, N, FREQ
67	10	FORMAT (12, D10.1)
68		IF (N.EQ.0) GO TO 999
69	2	PRINT 12, N, FREQ
70	12	FORMAT (13, BH LAYERS, FTOTT, Struct, Struct
71		READ 20, $(Z(1), 1=1, N)$
72		PRINT30, (2(1), 1 = 1, N)
73		READ 20, $(C(1), 1 - 1, K)$
74	20	FORMAT (BDI0.4) $I = 1.N$)
75		PRIN130, (CR(1), 1 = 1.N)
76		READ 20, $(CB(1), 1 = 1, N)$
77		PEAD 20 (GAMMA(I), I = 1, N)
78		PRIVI30. (GAMMA(I), I = 1, N)
79		RFAD = 20, (DPK(I), I = 1, N)
80		PRINT 30, $(DPK(I), I = 1, N)$
82		READ 20, $(BLPK(I), I = 1, N)$
83		PRINT30, $(BLPK(I), I = 1, N)$
84		READ 20, (RHO(I), I = 1, N)
85		PRINT 30, $(RHO(I), I) = 1, N$
86		IF (FREQ .GT. 0.) GUIDIN
87		FREQ = - FREQ
88		ATTEN = 0.
89		GO TO 19 GO TO 19
90	18	F SQ = (FREQ / (1. + F SQ) + 40. * F SQ / (4100. + F SQ))
91	40	ATTEN = ATTEN * 1.0936
92	19	ATTEN A ATTEN
93	14	FORMAT (8H ATTEN = ,G10.5, 5HDB/KM)
94	1 - 4	$\Delta TTFN = ATTEN / 1000.D0$
95	30	FORMAT (9F14.5)
90	C 1	COMPLETE PROFILE
98	0	DO 33 I = 1, N
99		IF $(RHO(I) . EQ. 0.) RHU(I) = 1.02$
100		IF (CB(I) .NE. 0.) GO 10 31
101		CB(I) = C(I+1)
102	31	IF(C(I), NE, 0.) GUTU 32
103		C(I) = CB(I-1)
104	32	IF (DPK(I) .GE. 0.) do to ot
105		CI(I) = CBI(I-I)
106		
107	34	CI(1) = 0. $T_{T}(DDV(1) = 0.)$ GO TO 36
108		T = 07087 52708 / DPK(I)
109		(T = 2/201.52/00T((T - C(I)) * (T + C(I)))
110	-	CI(I) = 0
111	36	TE (GAMMA(I) .NE. 0.) GO TO 38
112	C	**BOTH SOUND SPEEDS GIVEN
113	C	

114		IF (BLPK(I), LE. 0.) GO TO 37
115		$\bar{1} = 2/28/.52708 / B(PK(T))$
116		CBI(I) = T - SOBT ((T - CB(I)) + (T + CB(I)))
117	37	T = C(I) * (C(I) * (C(I) + C(I)) + (I + CB(I)))
118		TI = CI(I) * (3 * (I))*2 = CI(I)*2)
119		IF $(B PK(I) I = 0) = (0.75 - 0.00)$
120		TFMP = (P(T) + 2) = (P(T) + 2)
121		TEMP1 = 2 + CP(1) + CP(1) + CP(1)
122		
123		
124		
125		CAMPIC = TEMPI / DENOM
126		GAMMAA(I) = 0.5 * (C(I) - (T * TEMP - TI * TEMP1)) /
127		(Z(1+1) - Z(1))
129		GAMMAI(I) = 0.5 * (CI(I) - (T * TEMP1 + TI * TEMP)) /
120		(2(1+1) - 2(1))
129		IF (I .EQ. N) GO TO 27
130		GO TO 33
131	С	**SPECIAL CASE, GRADIENT REAL NUMBER
132	39	IF (CI(I) .EQ. 0.) GD TO 42
133		TEMP = CB(I) * *2
134		TEM = TEMP**2
135		TEMP1 = CI(I)
136		COEF1 = CI(I)
137		CDEF2 = 2, * TEMP * $CT(T)$ + TT
138		CDEF3 = 2 + 1 + CP(1) + 11
139		CDEF4 = TEM + CI(T) = TEMP +
140		D(DEN) = 1 $D(D) = 1$ $EMP * T$
141		
142		
143		FD = ((COEF1 * TEMP1) + COEF2) * TEMP1 + COEF3) * TEMP1 + COEF4
144		TF = ((4. * CDEF1 * TEMP1) + 2. * CDEF2) * TEMP1 + CDFF3
145		EMPT = EMPT - FN / FP
146		IF (FN .GE. OLDFN) GO TO 43
147		OLDEN = FN
149	41	CONTINUE
140	43	CBI(I) = TEMP1
149		GAMMA(I) = .5 * (.5 * (CI(I) * (TEMP - CBI(I) * 2) - TI) (
150		* $(CB(I) * TEMP1) + C(I)) / (Z(I+1) - Z(I)) / (I) / $
151		GO TO 28
152	42	GAMMA(I) = C(I) - T / (CB(I) * 2 * (7(I+1)) - 7(I))
153		GO TO 33
154	С	**SOUND SPEED AND GRADIENT GIVEN
155	38	IF (I .EQ. N) GO TO 33
156		T = C(I) * (C(I) * * 2 - 3 * CI(I) * * 0)
157		TI = CI(I) * (3 * C(I) + 2 = CI(I) * 2)
158		IF (BLPK(I)) FO (0) ($(1)^{++2}$ - $(1(1)^{++2}$)
159		IF (BLPK(I) - L(1, 0,) GO TO 29
160		TFMP = (PPK(T) + FFFF = 0.546)
161		T = T + TEMP (2(1+1) - 2(1)) * 0.5
162		
163		
164		$T = (T_1 - Z(I)) - Z(I) - GAMMA(I) + T$
165		' = -('' - SQRT(TI * TI + T * TEMP)) / T
166		CB(I) = 54575.05416 * T / BLPK(I) / (1. + T * T)
167		CBI(I) = CB(I) / T
168	<u>^</u>	GU 10 37
160	6	**SPECIAL CASE, GRADIENT REAL NUMBER
170	28	I = MP = C(I) - 2. * GAMMA(I) * (Z(I+1) - Z(I))
170		TEM = TEMP**2 + CI(I)**2

```
XRE = (T * TEMP + TI * CI(I)) / TEM
171
                 XIM = -(T * CI(I) - TI * TEMP) / TEM
172
                 TEM = XRE**2 + XIM**2
                 CB(I) = SQRT((XRE + SQRT(TEM)) * .5)
173
174
                 CBI(I) = .5 * XIM / CB(I)
175
                 GAMMAI(I) = 0.
176
                 GO TO 33
                 TEMP = C(I) - 2. * GAMMA(I) * (Z(I+1) - Z(I))
177
           29
178
                 CB(I) = SQRT (T / TEMP)
                 GAMMAI(I) = .5 * (CI(I) - TI / CB(I)**2) / (Z(I+1) - Z(I))
179
180
                 GO TO 33
181
                 N = N - 1
           27
182
                 CONTINUE
           33
183
          C COMPUTE USEFULL QUANTITIES
184
                FORMAT (7X,6H RE M ,8X,6H IM M ,9X,5H L/KM,8X,6H RE C ,8X,
* 6H IM C ,5X,12H RE C BOTTOM,4X,12H IM C BOTTOM,10X,9H GRADIENT )
185
            58
186
187
                 OMEGA = 6.283185307D0 * FREQ
188
                 DO 40 I = 1, N
189
                 TEMP = C(I) * *2 + CI(I) * *2
190
                 CAY(I) = OMEGA * C(I) / TEMP
191
                 CAYI(I) = -OMEGA * CI(I) / TEMP
192
                 CAY SQ(I) = CAY(I) **2 - CAYI(I) **2
193
                 CAY SQI(I) = 2.D0 * CAY(I) * CAYI(I)
                 TEMDR = -2. * (GAMMA(I) * CAY SQ(I) - GAMMAI(I) * CAY SQI(I))
194
                 TEMDI = -2. * (GAMMA(I) * CAY SQI(I) + GAMMAI(I) * CAY SQ(I))
195
                       G CU(I) = (TEMDR * C(I) + TEMDI * CI(I)) / TEMP 
      G CUI(I) = (TEMDI * C(I) - TEMDR * CI(I)) / TEMP 
196
 197
                  TEM1 = DCBRT(-DSQRT( GAMMA(I)**2 + GAMMAI(I)**2) * 2.*OMEGA**2)
 198
                  TEM1I = DATAN (ABS(GAMMAI(I) / GAMMA(I)))/ 3.
 199
 200
                  CRTG = TEM1 * DCOS(TEM1I)
 201
                  CRTGI = TEM1 * DSIN(TEM1I)
 202
                  IF (GAMMA(I) .LT. 0.) CRTG = -CRTG
 203
                  IF (GAMMAI(I).LT. 0.) CRTGI = -CRTGI
                   G(I) = (C(I) * CRTG + CI(I) * CRTGI) / TEMP 
GI(I) = (C(I) * CRTGI - CI(I) * CRTG) / TEMP 
GI(I) = (C(I) * CRTGI - CI(I) * CRTG) / TEMP 
 204
 205
                  CON(I) = G(I) * C(I) - GI(I) * CI(I)
 206
 207
                  CON(I) = OMEGA**2 / CON(I)**2
 208
                  XMI = -GI(I) * (Z(I+1) - Z(I))
 209
                  XM = -G(I) * (Z(I+1) - Z(I))
 210
                  DPK(I) = -8686.D0 * CAYI(I)
                  PRINT 30, XM, XMI, DPK(I), C(I), CI(I), CB(I), CBI(I)
 211
 212
                 * ,GAMMA(I), GAMMAI(I)
G SQI(I) = 2. * G(I) * GI(I)
 213
 214
                  G SQ(I) = G(I) * * 2 - GI(I) * * 2
             40
 215
            C FIND MODES
 216
                   NXTRA=0
  217
                   IJ FLAG=0
  218
                   NN = NN + 1
  219
                   IF (K5 .EQ. 1) GO TO 15
  220
                   DO 50 NN = 1,350
  221
                   IF (IJ FLAG .EQ. 1) GO TO 53
  222
             15
                   IF (NXTRA .GT. 0) GO TO 44
             52
  223
                   READ 60, V,VI,STEP,STEPI,NXTRA
  224
                   FORMAT (4D10.4, 110)
  225
             60
                   IF (NXTRA .GE.0) GD TO 62
  226
                   V = V + VI * 1.D-10
  227
```

228		VI = STEP + STEPI * 1.D-10
229		GO TU 85
230	62	IF (V) 142,301,70
231	142	IF(STEP) 44 44 143
232	C S	
233	143	
234	145	512E5 = -1.
225		
235		IJ FLAG=1
230		V=-V
237		IF (NXTRA) 55,55,54
238	55	NXTRA = 20
239	54	XTRA = NXTRA
240		HOP = (STEP - V) / XTRA
241		HOPI=0.
242		IF(STEPI.NE.O.) HOPI=(STEPI-VI)/XTPA
243		$DO 47 T_{1} = 1$ NYTRA
244		CALL SETUD
245		
246		
247		
248		CALL DEINI(N, VEL, VELI)
240		DELTA = VEL
249		DELLI - VELT
250		SIZE = DELTA*DELTA + DELTI*DELTI
251		PRINT 56, V, VI, SIZE, VEL, VELI
252	56	FORMAT (2F12.3, 3D17.5)
253		IF ((SIZE2.LT.SIZE3).AND. (SIZE.GT.SIZE2)) GD TD 45
254	46	SIZE3=SIZE2
255		SIZE2=SIZE
256		V = V + HOP
257		VI=VI+HORI
258		
259	45	
260	-5	
261		$E_{\text{E}} = HOP / (SIZE - SIZE2)$
260		DELII = TEMP * (DET * VELI - DETI * VEL)
202		IEMP = .5D0 * (SIZE3 - SIZE) / (SIZE3 + SIZE - SIZE2 - SIZE2)
263		DELTA = HOP * TEMP
264		IF(HOPI.EQ.0) GO TO 49
265		VI=VI-HOPI
266		DELTAI=HOPI*TEMP
267		GD TO 49
268	47	CONTINUE
269		IN FLAGED
270		NXTRA=0
271		
272	52	
273	55	5122 2=-1.
274		5122=0
075		GU 10 46
275	44	NXTRA = NXTRA - 1
276		V = 3. * (PHASE V(NN-1) - PHASE V(NN-2)) + PHASE V(NN-3)
277		VI = 3.* (PHASI V(NN-1) - PHASI V(NN-2)) + PHASI V(NN-2)
278		STEP = (PHASE $V(NN-1)$ - PHASE $V(NN-2)$) * 0001
279	70	CALL SETUP
280		CALL DETNT(N.DET.DETI)
281	80	FORMAT (/, 2D20,11, 4D13,4)
282		VEL = DET
283		VFLT = DETT
284		DELTA - STED
000000000000000000000000000000000000000		

285		DELTI = STEPI
286		IF (DELTA .NE.O.) GO TO 49
287		IF (DELTI .EQ.O.) DELTA = .01
288	49	SIZE2 = 100.
289		RX = DET**2 + DETI**2
290		IF (K6 .LT. 3) PRINT 80, V, VI, DET, DET, SIZE, CARA
291		υ = [°] 0
292	48	+ 1 = ل = ل
293		IF (J.GT. 15) GO TO 51
294		$\mathbf{V} = \mathbf{V} + \mathbf{D}\mathbf{E}\mathbf{L}\mathbf{T}\mathbf{A}$
295		VI = VI + DELTI
296		IF (VI) 83,84,85
297	83	DELTI = DELTI - VI
298	84	VI = 1.D - 18
299	85	CALL SETUP
300		NNN = N + N - 1
301		DO 82 IA = 1,NNN
302		DO 82 IB = 1,4
303		BI(IA, IB) = Q(IA, IB)
304	82	B(IA,IB) = A(IA,IB)
305		CALL DETNT(N, DET, DETI)
306		IF (K6 .NE. 1) GO TO 72
307	71	PRINT 81, V, VI, DEI, DEII, SIZE, CNIK
308	81	FORMAT (2D20.11, 4D13.4)
309	72	IF (NXTRA .LT. 0) GU IU 51
310		TEMNR = DET * DELT * DELT
311		TEMNI = DETI * DELTA + DET * DELTI
312		TEMDR = VEL - DEL
313		TEMDI = VELI - DELI
314		TEMDEN = TEMDR*TEMDR*TEMDITEMDI
315		IF (TEMDEN .EQ. 0.) GO TO TEMNI*TEMDI
316		TEMRNU = TEMNR*TEMDR + TEMPR*TEMDI
317		
318		
319	•	DELTI = TEMINO/TEMEL DEPENDS ON WORD LENGTH AND SIZE OF PHASE VELOCITY * *
320	C * '	TE ($ABS(DELTA)$) IT. 1.D-14) GO TO 51
321		
322		SIZE = DEL(A + DEL(A
323	00	$\frac{1}{1} \left(\frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) = \frac{1}{1$
324	92	
325		VEL - DETI
320		
327	C F	
320	51	TE (INSUR .EQ. 0) GO TO 61
329	51	TPF = (DFT**2 + DETT**2) / RX
331		IF (TRE .LT. 1E-10) GO TO 61
332		PRINT 998, NN, TRE
333	998	FORMAT (5H MODE ,14,23H FAILED TO CONVERGE , E9.2)
334	000	GD TO 999
335	61	IF (MPCH .EQ. 0) GO TO 63
336		IF (NXTRA .LT. 0) GO TO 63
337		TEM1 = V + 1.D4
338		COL(1) = TEM1
339		TEMP = COL(1)
340		COL(2) = (TEM1 - TEMP) * 1.D10
341		TEM1 = VI * 1.D4

```
342
                                                                     COL(3) = TEM1
       343
                                                                     TEMP = COL(3)
       344
                                                                     COL(4) = (TEM1 - TEMP) * 1.D10
       345
                                                                     COL(5) = -NN
      346
                                                                     PUNCH 64, (COL(I), I = 1,5)
      347
                                                64
                                                                     FORMAT (5110)
      348
                                                63
                                                                     AF(1,NN) = A(1,3)
      349
                                                                     AG(1,NN) = Q(1,3)
      350
                                                                     BF(1,NN) = -A(1,4)
      351
                                                                     BG(1,NN) = -Q(1,4)
      352
                                                                     PHASE V(NN) = V
      353
                                                                     PHASI V(NN) = VI
      354
                                                                     IF (K6 .EQ. 1) GO TO 73
      355
                                               74
                                                                    PRINT 81, V, VI, DET, DETI, SIZE, CNTR
     356
                                               73
                                                                     LL = N - 1
     357
                                                                    IF (LL-1) 95,96,97
     358
                                               96
                                                                    I = 0
     359
                                                                    GO TO 98
     360
                                               97
                                                                    DO 110 J = 2, LL
     361
                                                                    I = J + J - 2
                                                                  \begin{array}{l} TEMNR = A(I,2)*AF(J-1,NN) - Q(I,2)*AG(J-1,NN) \\ TEMNI = Q(I,2)*AF(J-1,NN) + A(I,2)*AG(J-1,NN) \end{array}
     362
     363
                                                              TEMDR = A(I,3)*A(I+1,4) - Q(I,3)*Q(I+1,4) - A(I,4)*A(I+1,3) + Q(I,4)*Q(I+1,3)

TEMDI = Q(I,3)*A(I+1,4) + A(I,3)*Q(I+1,4) - Q(I,4)*A(I+1,3) - A(I,4)*Q(I+1,3)
     364
     365
    366
    367
    368
                                                                  TEMDEN = TEMDR*TEMDR + TEMDI*TEMDI
    369
                                                                  TEMRNU = TEMNR*TEMDR + TEMNI*TEMDI
   370
                                                                  TEMINU = TEMNI*TEMDR - TEMNR*TEMDI
                                                                 TEMP = TEMRNU / TEMDEN
TEMPI = TEMINU / TEMDEN
   371
   372
                                               \begin{array}{l} \text{TEMPI} = \text{TEMINU} / \text{TEMDEN} \\ \text{BF}(J, \text{NN}) = -(\text{TEMP}*A(\text{I+1}, 4) - \text{TEMPI}*Q(\text{I+1}, 4)) \\ \text{BG}(J, \text{NN}) = -(\text{TEMPI}*A(\text{I+1}, 4) + \text{TEMP}*Q(\text{I+1}, 4)) \\ \text{AG}(J, \text{NN}) = \text{TEMPI}*A(\text{I+1}, 3) + \text{TEMP}*Q(\text{I+1}, 3) \\ \text{110} \quad \text{AF}(J, \text{NN}) = \text{TEMP}*A(\text{I+1}, 3) - \text{TEMPI}*Q(\text{I+1}, 3) \\ \text{TEMNR} = -(A(\text{I+2}, 2) * \text{AF}(\text{LL}, \text{NN}) - Q(\text{I+2}, 2) * \text{AG}(\text{LL}, \text{NN})) \\ \text{TEMNI} = -(Q(\text{I+2}, 2)*\text{AF}(\text{LL}, \text{NN}) + A(\text{I+2}, 2)*\text{AG}(\text{LL}, \text{NN})) \\ \text{TEMDEN} = A(\text{I+2}, 3)*A(\text{I+2}, 3) + Q(\text{I+2}, 3)*Q(\text{I+2}, 3) \\ \text{TEMRNU} = \text{TEMNR}*A(\text{I+2}, 3) + \text{TEMNI}*Q(\text{I+2}, 3) \\ \text{TEMINU} = \text{TEMNR}*A(\text{I+2}, 3) - \text{TEMNR}*Q(\text{I+2}, 3) \\ \text{BF}(\text{N}, \text{NN}) = \text{TEMRNU} / \text{TEMDEN} \end{array}
   373
   374
  375
  376
  377
                                            98
  378
  379
  380
  381
  382
                                                               BF(N,NN) = TEMRNU / TEMDEN
BG(N,NN) = TEMINU / TEMDEN
  383
  384
                                           95
                                                                AF(N,NN) = 0.
 385
                                                                AG(N,NN) = 0.
 386
                                      C FIND NORMALIZING FACTOR
 387
                                                               D(NN) = 2.12429296D0 * RHD(1)**3 / G(1)
 388
                                                                DI(NN) = 0.
 389
                                                               DO 111 I = 2, N
                                                           \begin{array}{l} \text{TEMRSP} = AF(I-1, NN) *B(2*I-2, 2) - AG(I-1, NN) *BI(2*I-2, 2) + \\ 1 & BF(I-1, NN) *B(2*I-2, 1) - BG(I-1, NN) *BI(2*I-2, 1) \\ \text{TEMISP} = AG(I-1, NN) *B(2*I-2, 2) + AF(I-1, NN) *BI(2*I-2, 2) + \\ 1 & BG(I-1, NN) *B(2*I-2, 1) + BF(I-1, NN) *BI(2*I-2, 2) + \\ \text{AVI} = \text{TEMDSP} + \text{TEMDSP
 390
 391
 392
 393
394
                                                              AX1 = TEMRSP*TEMRSP - TEMISP*TEMISP.
395
                                                               AX1I = TEMRSP * TEMISP
396
                                                              AX1I = AX1I + AX1I
397
                                                              TEMDR = (G(I-1)**2 + GI(I-1)**2)
398
                                                              TEMDI = G(I) * * 2 + GI(I) * * 2
```

399	TEMP = (RHO(I-1) / RHO(I)) / TEMDI
400	TEM1 = (ZB (I-1) * G(I-1) + ZBI(I-1) * GI(I-1)) / TEMDR
401	* -(ZT(I) * G(I) + ZTI(I) * GI(I)) * TEMP
402	TEM1I = (ZBI(I-1) * G(I-1) - ZB(I-1) * GI(I-1)) / TEMDR
403	* - (ZTI(I) * G(I) - ZT(I) * GI(I)) * TEMP
404	TEMRSP = AF(I-1, NN) * B(2*I-1, 2) - AG(I-1, NN) * BI(2*I-1, 2) + AG(I-1, NN) * BI(2*I-1, NN) * BI(2*I-1
404	1 BF(I-1, NN) * B(2*I-1, 1) - BG(I-1, NN) * BI(2*I-1, 1)
405	TEMISP = AG(I-1, NN) *B(2*I-1, 2) + AF(I-1, NN) *BI(2*I-1, NN) *BI(2*I-1, NN) *BI(2*I-1, NN) *BI(2*I-1, NN) *BI(2*I-1, NN) *BI(2*I-1, NN) *B
400	1 = BG(1-1, NN) * B(2*I-1, 1) + BF(1-1, NN) * BI(2*I-1, 1)
407	AX2 = TEMRSP*TEMRSP - TEMISP*TEMISP
408	AV21 - TEMPSP * TEMISP
409	$A \times 21 = A \times 21 + A \times 21$
410	T = PHO(I-1) / (G CU(I-1)) * 2 + G CUI(I-1) * 2)
411	T = PHO(I) / (G CU(I)) **2 + G CUI(I) **2)
412	TEMD = C CU(I-1) * TEMDR = G CU(I) * TEMDI
413	$T_{EMQI} = G_{CQII}(I) * T_{EMDI} - G_{CUI}(I-1) * T_{EMDR}$
414	
415	
416	
417	$I \in MRZ = AAZ * I \in MZ = AAZ * I =$
418	TEMI2 = AX21 + TEM2 + AZ2 + TEM2 + TEMR2
419	D(NN) = D(NN) + TEMRT / RHO(T=1) + TEMI2
420	DI(NN) = DI(NN) + TEMIT / ROOT I / TEME
421	111 CONTINUE
422	IF(K1,GI,3) DA(NN) = DSURT((D(NN)))
423	* PHASE V(NN))
424	EIGEN(NN) = LAMBDA
425	EIGENI(NN) = LAMBDI
426	IF (K6 .GT. 2) GU TU 131
427	L = 0
428	K = 24
429	DO 112 I = $1, N$
430	L = L + 1
431	COL(L) = SNGL(ZT(I)) * 100.
432	L = L + 1 (22) at 52 (5) (5) (5)
433	COL(L) = SNGL(ZTI(I)) * 1000.
434	K = K + 1
435	COL(K) = SNGL(ZB(I)) * 100.
436	K = K + 1
437	COL(K) = SNGL(ZBI(I)) * 1000.
438	112 CONTINUE
439	PRINT 130, $(COL(I), I=1,L)$
440	PRINT 130, (COL(I), I=25,K)
441	130 FORMAT (4H Z = , 11(I6,I5))
442	M = N + N
443	PRINT 132, $(RATIO(I), I = 1, M)$
444	132 FORMAT (11(1X,2F5.3))
445	131 DB LOSS(NN) = - LAMBDI * 8686.D0
446	PHINV = V * PHASE V(NN-1) / ((V - PHASE V(NN-1)) * FREQ)
440	PRINT 109. NN, EIGEN(NN), EIGENI(NN), D(NN), DI(NN), PHINV, DB LUSS(NN)
110	109 FORMAT (3H N=.15,10H LAMBDA =,2E15.7,4H D= ,2E15.7,
110	* 12H INT RANGE = .F8.0, 6H L/K =, F8.5)
449	TE (K3 .EQ. 0) GO TO 50
450	CALL RODEF (K3)
451	50 CONTINUE
452	C READ IN SOURCE AND RECEIVERS DEPTHS
455	301 NRT = NR
454	
400	

456		NN = NN - 1
457		К1Р1 = К1 + 1
458		IF (K1 .NE. 3) GO TO 321
459		NR = NRT
460		GO TO 501
461	321	READ 20 SOURCE
462	320	NR = NR + 1
463		
464		IF (ND GT 50) CO TO 200
465	350	
466	310	Γ (RECORS(NR) . EQ. 0.) GD 10 300
467	220	IF (FINAL .EQ.U.) GU IU 320
407	330	RECVRS(NR+1) = RECVRS(NR) + STEPP
400	240	IF (RECVRS(NR+1) .GT. FINAL) GO TO 320
409	340	NR = NR + 1
470		IF(NR .GT. 50) GO TO 300
4/1		GO TO 330
472	300	PRINT 303
473	303	FORMAT (/21H SOURCE AND RECEIVERS)
474		PRINT 21, (DEPTH(I), I = 1, NR)
475	21	FORMAT (8F10.2)
476	C CO	MPUTE DEPTH FUNCTIONS
477		DO 500 I = $1.NN$
478		LOC = 1
479		$DO_{305} = 1 NR$
480		IF (() FO 1) AND (K1 GT F)) CO TO 20F
481		
482	380	$E_{\rm eff} = 0$
483	371	TE ((DC) (C) (C) (C) (C) (C) (C) (C) (C) (C) (
484	270	
104	370	
405	005	GU 10 380
486	385	IF (DEPTH(J) .GE. Z(LOC)) GO TO 360
487	390	LOC=1
488		LCTR=LCTR+1
489		IF (LCTR .GT. 2) GO TO 305
490		GO TO 380
491	360	X1 = CAY (LOC) - EIGEN (I)
492		X2 = CAY (LOC) + EIGEN (I)
493		X3 = CAYI(LOC) - FIGENI(I)
494		X4 = CAYI(IDC) + EIGENI(I)
495		TEMP = x1 + x2 - x3 + x4
496		TEMPT - Y1 + Y4 + Y2 + Y2
497		
498		$\frac{1}{2} = \frac{1}{2} $
499		Z = (TEMP + GSQ(LUC) + TEMP1 + GSQ1(LUC)) / TEMPEN
500		ZEI = (TEMPI * GSQ(LUC) + TEMP * GSQI(LUC)) / TEMDEN
500		
501		IF (ZE .GT7.5) GO TO 438
502		S = CAY(LOC)
503		T = CAYI(LOC)
504		DO 437 K = 1,20
505		TEMP = S**2 + T**2
506		TEMPI = (EIGENI(I) * S - EIGEN(I) * T) / TEMP
507		TEMP = (EIGEN(I) * S + EIGENI(I) * T) / TEMP
508		ZE = ((1. + TEMP) * (1 TEMP) + TEMPI**2) * CON(100)
509		ZEI = -2, * TEMPI * TEMP * CON(10C)
510		ZR = 7E / -7.5
511		F = (DBS(7P-1)) + T = 1 = 2 = 0 = 0 = 0.029
512		S = FIGEN(1) + (S - FIGEN(1)) / 75

513	437	CONTINUE
514	438	IF (G(LOC) .LT. 0.) GO TO 439
515		ZE = G(LOC) * (DEPTH(J) - Z(LOC)) + TEMT
516		IF (ZE .GT7.5) GO TO 442
510		$F(1) = 1 \cdot D = 12$
517		F(G) = 0
518		
519		$G_{0} = 0.000$ + (DEDTH(1) - 7(10C)) + ZE
520	439	ZE = G(LUC) * (DEPTR(T)) Z(LUC) + Z(L
521		IF (ZE .GT. SLIM) GO TO 442
522		F(J) = 1.D-12
523		FI(J) = 0.
524		GO TO 305
525	442	ZEI = GI(LOC) * (DEPTH(J) - Z(LOC)) + ZEI
526	302	CALL HANKEL(ZE,ZEI,1)
520	002	F() = (AF(OC, I)*H1R - AG(OC, I)*H1I + BF(OC, I)*H2R - BG(OC, I)
527		
528		FI(L) = (AG(L)C, I) * H1R + AF(LOC, I) * H1I + BG(LOC, I) * H2R + BF(LOC, I)
529		$P_1(0) = (A_0(100), 100)$
530		1 *H21) * RH0(L00)
531	305	CONTINUE
532		IF (K1 .EQ. 2) GU 10 451
533		GO TO 432
534	451	PRINT 270, DEPTH(NR)
535	270	FORMAT(7H1DEPTH ,F5.1,6X,3HE-8,17X,3HE-6,17X,3HE-4,17X,3HE-4,17X,5HE-2,
536		* 17X.3HE 0)
530	432	TE (K1 T. 4) GO TO 431
537	402	TE (K1 GT. 5) GO TO 433
538		$F_{\text{CD}}(I) = (F(I) * * 2 + FI(1) * * 2) / DA(I)$
539		SRE3(1) - ((()) - (())
540		GU = 10 - 500
541	431	[EMDEN = D(1) * D(1) + EI(1) * DI(1)
542		TEMRE = F(1) * D(1) + F(1) * D(1)
543		FD = TEMRE/TEMDEN
544		FDI = (D(I) * FI(1) - DI(I) * F(1)) / TEMDEN
545	433	DC 400 K = $2,NR$
546		J = K - 1
547		L = J * NN - NN + I
540		TE (K1 . LT. 6) GO TO 435
540		FF = SPFS(I) * (F(K)**2 + FI(K)**2) / DA(I)
549		
550	405	$G_{1} = G_{2} + G_{1} + G_{2} + G_{1} + F_{1}(K)$
551	435	FF = FU + F(K)
552		FFI = FD + FI(K) + FDI + F(K)
553	436	UU(L) = FF
554		UUI(L) = FFI
555	452	GO TO (400,410,420,400,400,400,400,400,400,400), KITT
556	C PL	LOT DEPTH FUNCTIONS
557	420	DD 210 II = 1,120
558	210	COL(II) = 1H
559		DD 220 II= 20,100,20
555	220	COL(II) = 1HI
500	220	EE - EE + EE + EFI * EFI
561		TE ((FE CT 1E-20) AND (FE.LT.10000.)) GO TO 240
562		
563		GU TU 250 102 DO L 0 17147DO * DLOG(EE)
564	240	1NI = 100.00 + 2.1114/00 + 0104(11)
565		COL(INI) = 1H*
566		GO TO 225
567	250	COL(2) = 1H*
568	225	PRINT 260, COL
560	260	FORMAT (120A1)

```
570
                   GO TO 400
 571
            C PRINT DEPTH FUNCTIONS
 572
             410 F MAG(J) = SQRT (FF * FF + FFI * FFI)
 573
                   IF (FF) 430,440,450
             430 F ANG(J) = ATAN(FFI / FF) * 57.29577951D0 + 180.D0
 574
 575
                   GO TO 400
 576
             440 F ANG(J) = 90.
 577
                   GO TO 400
 578
             450 F ANG(J) = ATAN(FFI / FF) * 57.29577951D0
            170 FORMAT ( 10F12.4)
180 FORMAT(/10E12.3)
 579
 580
 581
             400 CONTINUE
                  IF (K1.EQ.1) GO TO 441
GO TO 500
PRINT 180, (F MAG(K), K = 1,J)
 582
 583
 584
             441
 585
                  PRINT 170, (F ANG(K), K = 1, J)
           500 CONTINUE
C CALCULATE ATTENUATION AND READ IN RANGES
IF ((K1 .EQ. 4).OR.(K1 .EQ. 5)) PRINT 180, (SRES(K), K= 1,NN)
IF (K1 .EQ. 5) PUNCH 434 (SRES(K), K = 1,NN)
 586
 587
 588
                  IF (K1 .EQ. 5) PUNCH 434, (SRES(K), K = 1, NN)
 589
 590
                  JF (K2 .IT. 3) GO TO 501
 591
 592
                  IF (K2 . EQ. 4) K8 = 3
 593
                  IF (K2 . EQ. 3) K8 = 2
 594
                  K2 = 0
                  KX = K2 + 1
GO TO (561,551,551), KX
595
            501 KX = K2 + 1
596
            551 PRINT 533, NN,N, C(1), Z(2), C(2), Z(3), C(3), Z(4), C(4),

* SOURCE, RECVRS(40), FREQ

533 FORMAT (1H1, 2I5, 10F10.4)
597
598
599
600
                  ICTR=0
601
                  R LOS(1) = 120.
602
                  LEVEL(1) = 1
603
                  DO 562 I = 1,5
604
                  P LEV(I)=40.
605
                  J COU(I) = 4
606
                  J COUNT(I) = -6
607
            562 CONTINUE
                  CONTINUE
IF((K2 .EQ. 2).AND.(NR .GT. 5))GO TO 772
GO TO 561
NR = 5
608
609
            772 NR = 5
610
611
            561
                 NL = NN
                 PRINT 524, NL
FORMAT (IB, 13H MODES IN SUM )
LL = 1
IF (K9 .GT. 0) NL = K9
612
613
            524
                 FORMAI (18, 13H HOLES IN COM
LL = 1
IF (K9 .GT. 0) NL = K9
READ 20, RANGE, FINAL R, STEP R
IF (K8 .EQ. 3) PUNCH 30, RANGE, FINAL R, STEP R
IF (RANGE) 563,1,564
614
615
616
617
618
619
           563 NN = NN + 1
                 READ 11, K1, K2, K3, K4, K5, K6, K7, K8, K9
PRINT 11, K1, K2, K3, K4, K5, K6, K7, K8, K9
620
621
622
                 GO TO 301
623
           564 IF (FINALR .LE. 0.) GO TO 550
624
                 FINAL R = FINAL R + 1.D-3
625
           560 IF (RANGE .GE. FINALR) GD TO 561
           550 R ATTEN = RANGE * ATTEN - 9.9429946
626
```

627		IF (K1 .GT. 5) RATTEN = 0.D0
628		IF (NI .UI. 5) GO TO 536
629		IF (K7 .EQ. 2) RATTEN = 4.342944800 * DLUG(FREQ)
630		IF (RANGE * DB LOSS(NL) .LT. 15.D4) GU TU 522
631	521	NL = NL - 1
632	522	DO 520 I = 1, NL
633		IF (K7 .LT. 2) GO TO 523
634		FMAG(I) = PHASE V(I)
635		GO TO 520
636	523	TEMP RE = EIGEN(I) * RANGE
637		TEMPIM = EIGENI(I) * RANGE
638		CALL HZERO(TEMPRE, TEMPIM)
639		HZERO2(I) = HZEROR
640		IF (K7 .EQ. 0) GO TO 520
641		FMAG(I) = HZEROR**2 + HZERUI**2
642	520	HZER2I(I) = HZEROI
643	536	L = 0
644		DO 540 J = 1, NR
645		FF = 0
646		FFI = 0
647		TEMP = 0.D0
648		D0 530 I = 1, NL
649		K = L + 1
650		IF(K1 . L1. 6) GO TO 337
651		IEMP = IEMP + OO(K)
652	FOR	$r_{\rm r}$ ($r_{\rm r}$ = 0, 0) GO TO 534
653	537	T = (K7 . EQ. 0) CO (1) * (UUI(K) **2 + UU(K) **2)
654		1 EWP = 1 EWP + 1 HOG(x) + (0 - x)
655	E24	TEMIM = UUI(K) * HZERO2(I) + UU(K) * HZER2I(I)
656	534	TEMPE = UU(K) * HZERO2(I) - UUI(K) * HZER2I(I)
657		
658		FFT = FFT + TEMIM
660	530	CONTINUE
661	000	IF (K1 .GT. 5) GO TO 535
662		IF (K7 .GT. 0) GO TO 535
663		TEMP = FF**2 + FFI**2
664	535	T RE = TEMP
665		RX = -4.3429448 * ALOG(T RE) + R ATTEN
666		R LOSS(J) = RX
667		TF (K4 .LT. 2) GO TO 545
668		T RE = $-4.3429448 * ALOG(UU(K)**2 + UUI(K)+*2)$
669		PRINT 170, RECVRS(J), RX, I RE
670		IF (K4 .NE. 3) GO TO 545
671	545	CONTINUE
672		L = L + NN
673		IF (K8 .LT. 2) GU TU 540
674		IF $(K8, EQ, 3)$ GU 10 500 + 1400 500
675		LPCH = -RLUSS(0) * 10.00 + 1400.000
676		IF(LPCH . LI. 0) LPCH = 999
677		IF(LPCH .GI. 999) LPCH = 0000
678		LUSP(H(U,LL) = LPCH
679		IKNG = KANGE / 1000.00 IS (1) EO 25) PUNCH 903, IRNG. (LOSPCH(J,LLL),LLL = 1,25)
680		IF (LL .EQ. 25) FORCE 500, Intel (2014)
681	903	rotio = 540
682	500	
083	238	

684		LOSS(J) = (140.05 - RX) * 10.	
685		IF $(LOSS(J) . LT. 0) LOSS(J) = 0$	
686		IF (LOSS(J) . GT. 999) LOSS(J) = 999	
687	540	CONTINUE	
688		GO TO (770.780.716).KX	
689	СР	LOT DB LOSSES	
690	71	2 COL(15) = 1 HI	
691	•	COL(39) = 1HI	
692		COL(63) = 1HI	
693		COL(87) = 1HI	
694		COL((111)-1HT)	
695		COL(171) = 1HY	
696		COL(51) = 1HX	
697		COL(31) = 1HX	
698			
699			
700		$1 \ FLACE = 135$	
701		$DU / \delta / U = 1, NR$	
702	702	I PLACE = I PLACE - 24	
703	103	IPLUI = P LEV(J) - R LOSS(J)	
704		IF (I PLOT .GT. 10) GO TO 776	
705	770	GU 10 777	
705	//6	P LEV(J) = P LEV(J) - 20.	
700		J COUNT(J) = J COUNT(J) - 2	
707		J COU(J) = J COU(J) - 2	
708	786	COL(I PLACE + 1) = 1HO	
709	_	IF (P LEV(J) - 100.) 778,779,781	
710	778	JC = J COU(J) + 1	
711		COL(IPLACE) = ING(JC)	
712		GO TO 783	
713	779	COL(I PLACE) = 1H0	
714		GO TO 782	
715	781	JC = J COUNT(J) + 1	
716		COL(IPLACE) = ING(JC)	
717	782	COL(I PLACE - 1) = 1H1	
718		GO TO 783	
719	777	IF (I PLOT .LT9) GO TO 784	
720		GO TO 785	
721	784	P LEV(J) = P LEV(J) + 20	
722		J COU(J) = J COU(J) + 2	
723		d COUNT(d) = d COUNT(d) + 2	
724		GO TO 786	
725	785	IPP = I PLACE + IPLOT	
726		COL(IPP) = 1H+	
727	787	CONTINUE	
728		GO TO 750	
729	C CO	VIOUR LOSS ETELD	
730	780	D0.590 + 1 = 1.120	
731	590	COL(1,1) = 1H	
732	000	COL(00) = 10	
733			
734			
735			
736		10004000 = 2,41	
737	600		
730	620	IF (RLUS (JJ) .LT. CONTR(LEV)) GO TO 6	00
730		GU 1U 610	
740	600		
140		GU 10 620	

741 742	610 650	IF (LEV .EQ. LEVEL(JJ)) GO TO 640 IF (LEV .GT. LEVEL(JJ)) GO TO 660
743		GO TO 670
744	660	II = LEVEL(JJ)
745		GD TU 680
746	670	11 = LEV
747	680	000 = 124 - 3*00
748		LEVEL(000) = 0.0002(22)
749	640	
750	040	COL(1) = 1HI
751		PRINT 261. (COL(I1), I1 = 1,119)
752	716	D0.690 JJ = 1.120
754	690	COL(JJ) = 1H
755	050	ICTR = ICTR + 1
755		IF (ICTR .EQ. 10) GO TO 700
757		GO TO 714
758	700	TEMP = (RANGE + 1.) / 10000.
759		IND = TEMP
760		COL(2) = ING(IND+1)
761		TEMP1 = IND
762		TFMP = (TFMP - TEMP1) * 10.
763		IND = TEMP
764		COL(3) = ING(IND+1)
765		TEMP1 = IND
766		IND = (TEMP - TEMP1) * 10.
767		COL(5) = ING(IND+1)
768		COL(4)=1H.
769		COL(6) = 1HK
770		COL(7) = 1HY
771		COL(8) = 1HD
772		COL(9) = 1HS
773		
774	714	GU = U = (710, 712), K2
775	710	
776		CUL(61) = 1HI
777		CUL(91) = 111
778		TEMD = 1EVEL(1,1)
779		
780	020	TE (LEVEL(JJ), GT, LEVEL(JJ +1)) GO TO 730
781	830	CO TO 740
702	730	TT = IFVEL(JJ) - 1
784	100	KK = 1
785	860	FX = (CONTR(II) - R LOS (JJ)) / (RLOS (JJ+1) - CONTR(II))
786	000	PD 760 LL = 1.3
787		IF (EX .LT. TEST(LL)) GO TO 800
788	760	CONTINUE
789		LL = 4
790	800	JJLL = 125 - 3*JJ - LL
791		COL(JJLL) = J SMBL(II)
792		GD TD (810,820),KK
793	810	LEVEL(JJ) = LEVEL(JJ) - 1
794		GO TO 830
795	740	IF (LEVEL(JJ) .LT. LEVEL(JJ+1)) GU TU 840
796		GO TO 720
797	840	II = LEVEL(JJ)

798		KK=2
799		GU IU 860
800	820	LEVEL(JJ) = LEVEL(JJ) + 1
801		GO TO 740
802	720	LEVEL(JJ) = TEMP
803		COL(1) = 1HI
804	750	PRINT 261, $(COL(I1), I1 = 1, 119)$
805	261	FORMAT (1X, 119A1)
806		GO TO 581
807	C PRI	INT DB LOSSES
808	770	PRINT 580, RANGE, (R LOSS(K), $K = 1.NR$)
809		LL = LL + 1
810		IF (LL .GT. 25) $LL = 1$
811	580	FORMAT (F9.0, 2X, 18F6.1)
812	581	RANGE = RANGE + STEP R
813		IF (K8 .NE. 3) GO TO 560
814		PUNCH 980, $(LOSS(I), I = 1.NR)$
815	980	FORMAT (2613)
816		GO TO 560
817	999	STOP
B18		END

1		SUBROUTINE SETUP		
2		IMPLICIT DOUBLE PRECISION (A-H, O-Z)		
2		DOUBLE DECISION LAMBDA, LAMBDI		
3		DOUBLY (HANY HOR HOT HIR HII. HORR. HOPI, HIPR, HIPI, EXPONT		
4		COMMUN /HAN/ HZR, HZR, HZR, CNTP, PATIO(25)		
5		COMMON /EXPU/ EXSUM, CNTR, CATO(20)		
6		COMMON/DETMNT/A(25,4),Q(25,4)		
7		COMMON/INPUT/ Z(12), N, OMEGA, V, VI, CON(12), GSQ(12),		
		CAY(12) LAMBDA, LAMBDI, G(12)		
8		$G_{1}(12)$, $G_{1}(12)$, $G_{2}(12)$, $G_{2}(12)$, $G_{2}(12)$		
9		2, RHO(12), GI(12), GI		
10		COMMON / LIMIT / LIMIT, ZIL(12) ZE(12) ZEI(12)		
11		COMMON/PARTS/ 21(12);211(12);20(12);10-(12);		
12		DENOM = V * V + VI * VI		
13		LAMBDA = OMEGA * V / DENOM		
14		IAMBDI = -OMEGA * VI / DENOM		
4.5		M = N = 1		
15				
16		D = 10 + 10 = 0, m		
17		IF (I .EQ: 0) GO TO 05		
18		IF (ZR .GI7.4) GO TO 25		
19		IF (G(I) .LT. 0.) GU 10 25		
20		ZE = G(I) * (Z(I+1) - Z(I)) + ZE		
21		IF (ZE . LT7.5) ZE = -7.5		
22		GD 10 26		
22	OF	CONTINUE		
23	20	$z_{\rm r} = -c(1) + (7(1+1) - 7(1)) + ZR$		
24		ZE = G(1) + (Z(1)) - G(1)		
25		1F(2E.LI.SLIM) $2L = 3LIM$		
26	26	CONTINUE		
27		ZQ = GI(I) * (Z(I+1) - Z(I)) + ZI		
28	30	ZB(I) = ZE		
29		ZBI(I) = ZQ		
20		CALL HANKEL (ZE.ZQ.Q)		
30		ZP(I) = ZE		
31		2D(1) - 2C		
32		2BI(1) - 2W		
33		RATIO(2*1) = EFOIL		
34		A(2*1,1) = H2R * RHO(1)		
35		Q(2*I,1) = H2I * RHO(1)		
36		A(2*I,2) = H1R * RHO(I)		
37		Q(2*I,2) = H1I * RHO(I)		
38		A(2*I+1,1) = H2PR * G(I) - H2PI * GI(I)		
20		O(2*I+1,1) = H2PI * G(I) + H2PR * GI(I)		
39		A(2*I+1,2) = H1PR * G(I) - H1PI * GI(I)		
40		A(2+1+1,2) = H1PI * G(I) + H1PR * GI(I)		
41		Q(2*1+1,2) = 1111 + Q(2)		
42	35			
43		GSABS = G SQ(1+1) * 2 + G SQ1(1+1) + 2		
44		X1 = CAY(I+1) - LAMBDA		
45		X2 = CAY(I+1) + LAMBDA		
46		X3 =CAYI(I+1) - LAMBDI		
47		X4 = CAYI(I+1) + LAMBDI		
47		$x = x_1 + x_2 - x_3 + x_4$		
48				
49		$T = A_1 + A_2 + A_3 + A_4 + $		
50		21(1+1) = (A + G SQ(1+1)) = X + G SQ1(1+1)) / GSABS		
51		ZTI(I+1) = (Y * G SW(I+1) - X * G SWI(I+1)) + SOURCE		
52		ZR = ZT(I+1)		
53		ZI = ZTI(I+1)		
54				
55		ZE = ZR		
56		ZQ = ZI		

```
57
                        IF (ZR .GT. -7.5) GO TO 40
  53
                       S = cAy(i+1)
                        T = CAYI(I+1)
  59
                                            (G(I+1) * S + GI(I+1) * T) / (S**2 + T**2)
  60
                       CON =
  61
                       CON = 1. / CON * * 2
                       DD 36 J = 1,20
  62
  63
                       TEMP = S**2 + T**2

TEMPI = (LAMBDI * S - LAMBDA * T) / TEMP

TEMP = (LAMBDA * S + LAMBDI * T) / TEMP

ZR = ((1. + TEMP) * (1. - TEMP) + TEMPI**2) * CON(I+1)
                       TEMP = S**2 + T**2
  64
  65
  66
  67
                       R = ZR / -7.5
                       R = ZR / -7.5
IF (DABS(R-1.) .LT. 1.D-3) GO TO 41
S = LAMBDA + (S - LAMBDA) / R
  68
  69
  70
               36
                       CONTINUE
  71
               41
                       ZI = -2. * TEMPI * TEMP * CON(I+1)
  72
                       ZT(I+1) = ZR
  73
                       ZTI(I+1) = ZI
  74
  75
              40
                       CONTINUE
  76
                       CALL HANKEL(ZR,ZI,O)
  77
                       ZT(I+1) = ZR
 78
                       7TI(I+1) = 7I
 79
                       RATIO(2*I+1) = EXPONT
                       IF (I .NE. 0) GO TO 45
A(1,3) = H2R * RHO(1)
 80
 81
 82
                       Q(1,3) = H2I * RHO(1)
 83
                       A(1,4) = H1R * RHO(1)
 84
                       Q(1,4) = H1I * RHO(1)
 85
                       GO TO 10
 86
               45
                       CONTINUE
 87
                       A(2*I,3) = -H2R * RHO(I+1)
                     Q(2*I,3) =-H2I * RHO(I+1)
A(2*I,4) =-H1R * RHO(I+1)
Q(2*I,4) =-H1I * RHO(I+1)
A(2*I+1,3) =-H2PR * G(I+1) + H2PI * GI(I+1)
Q(2*I+1,3) =-H2PI * G(I+1) - H2PR * GI(I+1)
A(2*I+1,4) =-H1PR * G(I+1) + H1PI * GI(I+1)
Q(2*I+1,4) =-H1PI * G(I+1) - H1PR * GI(I+1)
CONTINUE
A(2*N-2,4) = 0.
Q(2*N-2,4) = 0.
A(2*N-1,4) = 0.
RETURN
END
 88
                       Q(2*I,3) =-H2I * RHD(I+1)
A(2*I,4) =-H1R * RHD(I+1)
 89
 90
 91
 92
 93
 94
 95
               10
 96
 97
 98
 99
100
```

1	SUBROULINE DETNT(N,DET,DETI) IMPLICIT DOUBLE PRECISION (A-H,O-Z)
2	DOUBLE PRECISION DET, DETI
4	COMMON /EXPO/ EXSUM, CNTR, RATIO(25)
5	COMMON/DETMNI/ A(25,4), Q(25,4)
6	DLUSS = 1. CNTR = 0.
8	DET = A(1,3)
9	DETI = Q(1,3)
10	LIM = N + N - 3
11	DO 100 I=1,LIM,2
12	
13	
15	M = 3
16	II = 1
17	GO TO 500
18	10 J = 1 + 1
19	
21	M = 1
22	GO TO 600
23	30 J = I + 2
24	
25	GO TO 600
27	40 L = I + 1
28	M = 2
29	
30	50 K = 5 M = 3
32	II = 3
33	GO TO 600
34	60 K = 4
35	M = 4
37	II = 4
38	GO TO 600
39	70 K = 3
40	II = 2
41	500 C = A(L,M) * A(L,M) + Q(L,M) * Q(L,M)
43	BO = (A(J,K)*A(L,M) + Q(J,K)*Q(L,M)) / C
44	BI = (Q(J,K)*A(L,M) - A(J,K)*Q(L,M))/C
45	GO TO (10,50), II = (A(I M)*B - Q(L,M)*BI)
46	TDI = Q(J,K) - (A(L,M)*BI + Q(L,M)*B)
48	TEM = TD**2 + TDI**2
49	TEMP = A(J,K) * * 2 + Q(J,K) * * 2
50	TEMP = TEM / TEMP
51	IF (II .EQ. 2) GO TO 92
52	Q(J,K) = Q(J,K) * 10.D-18
54	A(J,K) = A(J,K) * 10.D-18
55	IF (TEMP .GT. 10.D-35) GU 10 92
56	CNTR = CNTR + 1.

57		GO TO 90
58	92	A(J,K) = TD
59		Q(J,K) = TDI
60	90	GO TO (700.40.60.70). IT
61	700	C = DET * A(J,K) - DET I * O(J,K)
62		DETI = DFT * O(J,K) + DFTT * A(J,K)
63		DET = C
64		GD TD (30,100), TT
65	100	CONTINUE
66		RETURN
67		END

	SUBROUTINE RCOEF (K3)
2	IMPLICIT DOUBLE PRECISION (A-H, O-Z)
2	COMMON/INPUT/ Z(12), N, OMEGA, V, VI, GCU(12), GSU(12),
3	1 CAY(12), LAMBDA, LAMBDI, G(12)
4	2. $BHO(12)$, $GI(12)$, $GSQI(12)$, $CAYI(12)$
5	DIMENSION RR(12), RI(12), RA(12), RT(12), CTSQ(12), CTSQ(12)
0	COMMON/REFL/ AF(12,200), AG(12,200), BF(12,200), BG(12,200),
6	2 FIGEN(350), EIGENI(350), BR(25,4), BI(25,4), CB(12), CBI(12),
0	3 CAYSO(12), CAYSOI(12), NN
10	NM = N - 1
11	I = K3
10	IF (I.GT. NM) I = NM
12	110 $J = I + I$
10	K = J + 1
14	TF (NN .NE. 1) GO TO 102
10	I = I + 1
17	TEMP = CB(I) * *2 + CBI(I) * *2
10	CY = OMEGA * CB(I) / TEMP
10	CYI = -DMEGA * CBI(I) / TEMP
20	CYSO(I) = CY**2 - CYI**2
21	CYSOI(I) = CY * CYI
22	CYSQI(I) = CYSQI(I) + CYSQI(I)
23	102 EL SQ = C YSQ(I) - EIGEN(NN)**2 + EIGENI(NN)**2
24	ELSQI = C YSQI(I) - 2.D0 * EIGEN(NN) * EIGENI(NN)
25	$TEMP = ELSQ + DSQRT (ELSQ^{**2} + ELSQ^{**2})$
26	IF (TEMP .LE. 0.D0) GO TO 107
27	EL = DSQRT (TEMP * .5D0)
28	ELI = ELSQI / (EL + EL)
29	103 A = AF(I,NN) * BR(J,2) - AG(I,NN) * BI(J,2)
30	* + BF(I,NN) * BR(J,1) - BG(I,NN) * BI(J,1)
31	B = AF(I,NN) * BI(J,2) + AG(I,NN) * BR(J,2)
32	* + BF(I,NN)*BI(J,1) + BG(I,NN)*BR(J,1)
33	E = AF(I,NN) * BR(K,2) - AG(I,NN) * BI(K,2)
34	* + BF(I,NN) * BR(K,1) = BG(I,NN) * BI(K,1)
35	F = AF(I,NN) * BI(K,2) + AG(I,NN) * BR(K,2)
36	* + BF(I,NN) * BI(K,1) + BG(I,NN) * BR(K,1)
37	C = (F * EL - E * ELI) / (ELSQ + ELSQI)
38	D = -(E * EL + F * ELI) / (ELSQ + ELSQI)
39	TEMP = (A + C) * *2 + (B + D) * *2
40	RR(I) = (A**2 - C**2 + B**2 - D**2) / ICMP
41	RI(I) = -2.00 * (A * D - B * C) / TEMP
42	10 FORMAT (10D13.5)
43	RA(I) = 0
44	IF (CB(I) .GT. V) GO TO 104
45	RX = CB(I) / V
46	RA(I) = ACOS(RX) * 57.296
47	104 $RT(I) = RR(I) * * 2 + RI(I) * * 2$
48	RT(I) = 1.D0 / RT(I)
49	RI(I) = -DATAN2 (RI(I), RR(I)) + 37.23000
50	RR(I) = -4.34294D0 * DLUG (RT(I))
51	IF (K3 .NE.1) GO TO 108
52	$\mathbf{I} = \mathbf{I} + 1$
53	IF (I .LT. N) GO TO 110
54	105 CONTINUE
55	PRINT 106, $(RR(1), 1 = 1, NM)$
56	PRINT 106, $(RI(1), 1 = 1, NW)$

57		$\begin{array}{llllllllllllllllllllllllllllllllllll$
59	106	FORMAT (9G13.4)
60		RETURN
61	108	PRINT 109. 7(1) PR(1) PT(1) PT(1) PA(1)
62	109	FORMAT (9H AT DEPTH F7 0 8H VD B F F0 4 FU PD
63		* 8H. PH A = . F9 3 16H DEGREES CD A = . F9 4 ,7H DB, OR, D12.4,
64		RETURN
65	107	
66		F = D S O P T (D A P S (F = S O))
67		
68		END

1	SUBROUTINE HANKEL (ZR, ZI, IH)	
2	COMMON /HAN/ H2R,H21,H1R,H11,H2FR,H211,H1R,H11,H11,H11,H11,H11,H11,H11,H11,H	
3	INTEGER FLPS, FLOUAD TIM P	
4	DOUBLE PRECISION ZMLAZ, ILIM, R	
5	COMMON /LIMIT/ TLIM, EXPUNI	
6	DOUBLE PRECISION 2R, 21, H2R, H21, H21, K1, K2, CONA STORE1, STORE2,	
7	1 A, B0, B, C0, C, D0, D, C4, D4, K, K, K, F, Z, STORES, STORE	
8	2 STORE3, STORE4, STORE5, STORE6, STORE7, STORE7, STORE9, CALCAR, CPR, CPL, CTHR,	
9	3 STOR12, STOR13, STOR14, STOR15, STOR16, STOR16, STOR16, STOR16, STOR12, STOR13, STOR14, STOR15, STOR16, STOR	
10	4 CTP, FR, FI, FPR, FPI, F1R, F11, F2R, F21, GR, G1, G1, G1, G1, G1, G1, G1, G1, G1, G1	
11	5 G11,G2R,G21,H11R,H111,H12R,H121,H11PR,H11PR,H11P1,H12PR,H121,H12PR,H121,H12PR,H121,H12PR,H121,H12PR,	
12	6 H21PR, H21PI, H22PR, H22PI, H21R, H21R, H21R, H22R, H22P, H22R, H22PI, H21R, H21PI, H22R, H22PI, H21R, H21P, H21R, H21PI, H22R, H22PI, H21R, H21PI, H21R, H21PI, H22R, H22PI, H21R, H21PI, H22R, H22PI, H21R, H21PI, H21P	
13	7 SPI,S2, THR,X,XR,XI,XPR,XPI,YR,YI, ZPI,ZPI,ZPI,ZPI,ZPI,ZPI,ZPI,ZPI,ZPI,ZPI,	
14	8 EXPONT, ABK, ZRTM2R, ZRTM2I, ZRTM4R, ZRTM4R, ZRTM41, ZRTZR, ZRTZR, ZRTZR, ZRTZR, ZRTM2R, ZRTM2R, ZRTM4R, ZRT	
15	9 ZRT41, Z32R, Z32I, STP, SIOR17, SIAR, C5, 05, 711, A2(40)	
16	DIMENSION $A(40), B(40), C(40), D(40), C4(20), D4(20), C4(20), C4(20)$	
17	1 XPR(40), XPI(40), C5(20), D5(20), ZMLA5(20)	
18	DATA $(A(1), I=1, 36)$ /	
19	* -1.5507278615487157D-001, 5.169092676257575757	
20	1 -7.17929565531812830D - 05, 5.438860344937975980 07, 5.438860344937975980 07, 5.438860344937975980 07, 5.438860344937975980 07, 5.438860344937975980 07, 5.438860344937975980 07, 5.438860344937975980 07, 5.438860344937975980 07, 5.438860344937975980 07, 5.438860344937975980 07, 5.438860344937975980 07, 5.438860344937975980 07, 5.438860344937975980 07, 5.438860344937975980 07, 5.438860344937975980 07, 5.438860344937975980 07, 5.438860344937975980 07, 5.43886034997975980 07, 5.43886034997975980 07, 5.43886034997975980 07, 5.43886034997975980 07, 5.438860349979778980 07, 5.43886034997778980 07, 5.43886034997778980 07, 5.43886034997778980 07, 5.43886034997778980 07, 5.43886034997778980 07, 5.43886034997778980 07, 5.43886034997778980 07, 5.43886034997778980 07, 5.43886034997778980 07, 5.43886034977789800000000000000000000000000000000	
21	2 -2.58993349758951237D - 09, 8.4638349594426505277072D - 17	
22	3 -2.01519879986734545D - 14, 3.650722463527759730 17, 3.650722463527759730 17, 3.650722463527759730 17, 3.650722463527759730 17, 3.650722463527759730 17, 3.650722463527759730 17, 3.650722463527759730 17, 3.650722463527759730 17, 3.650722463527759730 17, 3.650722463527759730 17, 3.650722463527759730 17, 3.650722463527759730 17, 3.650722463527759730 17, 3.650722463527759730 17, 3.650722463527759730 17, 3.650722463527759730 17, 3.650722463527759730 17, 3.650722463527759730 17, 3.650722463527759730 17, 3.65072463527759730 17, 5.650722463527759730 17, 5.650722463527759730 17, 5.650722463527759730 17, 5.650722463527799730 17, 5.650722463527799730 17, 5.650722463527799730 17, 5.65072200 17, 5.65072200 17, 5.6507200 17, 5.5700 17, 5.5700 17, 5.67000 17, 5.6700 17, 5.6700 17, 5.6700 17, 5.6700 17, 5.6700 17, 5.6700 17, 5.6700 17, 5.6700 17, 5.67000 17, 5.6700 17, 5.6700 17, 5.6700 17, 5.6700 17, 5.6700 17, 5.6700 17, 5.6700 17, 5.6700 17, 5.67000 17, 5.6700 17, 5.67000 17, 5.6700 17, 5.6700 17, 5.6700 17, 5.67000 17, 5.67000 17, 5.67000 17, 5.67000 17, 5.67000 17, 5.67000 17, 5.67000 17, 5.67000000000000000000000000000000000000	
23	4 -5 .20045934975470047D-20, 5 .977539482476667209D-29, 5 .10070787890D-29, 5 .100707890D-29, 5 .100707890D-29, 5 .1007078900D-29, 5 .1007078900000000000000000000000000000000	
24	5 -5 .66054875234532879D-26, 4 .492499009797879595 2 ,	
25	6 -3.031375850066045880-32, 1.76038085311292010 33, 1.76038085311292010 33, 1.76038085311292010 33, 1.76038085311292010 33, 1.76038085311292010 33, 1.76038085311292010 33, 1.76038085311292010 33, 1.76038085311292010 33, 1.76038085311292010 33, 1.76038085311292010 34, 1.76038085311292010 34, 1.76038085311292010 34, 1.76038085311292010 34, 1.76038085311292010 34, 1.76038085311292010 34, 1.76038085311292010 34, 1.76038085311292010 34, 1.76038085311292010 34, 1.760380853112920000000000000000000000000000000000	
26	7 -8.89081245106713441D-39, 3.9409628589552450 42,	
27	8 -1.545475672901393130-45, 5.3999848800374765370-56	
28	9 -1.691724586734780180 - 52, 4.77888301337803278510780 - 63	
29	A $-1.223472353654655730-59$, $2.8519169062659100-50$	
30	B = -6.078254280234251460-67, 1.189016877980505010-78,	
31	C = 2.14237275311729034D = 74, 3.56705420036430 = 86	
32	D = -5.50471327313964415D - 82, $7.8954579562237249D - 93$	
33	E = -1.05526034966989126D - 89, 1.37742651274131072D - 101.	
34	F = -1.53977168218007537D - 97, 1.688340672050893836D - 109, 1.68834067205080000000000000000000000000000000000	
35	G = -1.74020422875830830D = 105, $1.889 = 50295513712678D = 117/$	
36	H -1.54687790339646370D-113, 1.33859285513712676D +117	
37	· · · · · · · · · · · · · · · · · · ·	
38	DATA $(B(I), I=1, 36)$ / 1 34583080385769022D-03,	
39	* -5.65248937620229890-002, 1.545050505050505050505050505050505050505	
40	1 -1.495367559841878020 -05, 9.5850546000000 -12.	
41	2 -3.994037285902451990 - 10, -1.07012841344155830 - 18,	
42	3 -2.527807704806493500-15, 4.2130122413505-24,	
43	4 -5.57276830865629078D-21, 5.99222367764952D-30,	
44	5 -5.34066309073303316D - 27, 4.00314323511182437D - 36,	
45	6 -2.57019668261195482D - 33, 1.42314323511021615D - 43, 0.021615D - 43, 0.02160000000000000000000000000000000000	
46	7 -6.87508809232765398D-40, 2.3230877785630532D-50	
47	8 -1.10221782500302268D-46, 3.06709371597617291D-57,	
48	9 -1.12255630004727929D-53, 3.0676971371842408096D-64.	
49	A -7.606879255893286000-61, 1.7202361542426585D-72.	
50	B -3.561563187213418130-68, 0.776135106021425559 (7.7	
51	C = -1.188804503195485240 - 75, 1.959250000000000000000000000000000000000	
52	D -2.90462369773880309D-83, 4.06810017661842955D-95.	
53	E = -5.313610785006693800 - 91, 5.487523557162553346460D - 103.	
54	F -7.421557145296762240-99, 7.969696950505050504505 101,	
55	G -8.05038914195299455D-107, 7.66225646305632984D-119/	
56	H = -6.884688783453903250 - 115, 5.846355 - 850505220 + 107	

	and the second second second second	
DAT	TA (C(I), I=1,36)	
*	-3.1014557230974314D-	002 , 6 .46136608978631 547D-04 ,
1	-6.52663241392557118D-06,	3.88490024638426856D-08,
2	-1.523490292699713160-10,	4.23191747972142544D-13,
3	-8.76173391246671935D-16,	1.40412402443376913D-18,
4	-1.79326184474300016D-21,	1.86798108827395850D-24,
5	-1.61729964352723680D-27,	1.18223658152575789D-30,
6	-7.39359963430742897D-34,	4.00086560298021048D-37,
7	-1.89166222363130519D-40,	7.88192593179710497D-44,
8	-2.91599183566300591D-47,	9.64283014438824705D-51,
9	-2.86732980802505116D-54,	7.70787582802433108D-58,
A	-1.88226515946870112D-61,	4.19399545336163351D-65,
В	-8.56092152145669220D-69,	1.60677956483796775D-72,
С	-2.78230227677570174D-76,	4.45881775124311176D-80,
D	-6.632184666433 30621D- 84,	9.18076504212805399D-88,
E	-1.18568578614594524D-91,	1.43198766442747010D-95,
F	-1.62081229703165829D-99,	1.72280218647072522D-103,
G	-1.72297448391911713D-107,	1.62422179856628689D-111,
н	-1.44568028354809692D-115,	1.21690259557920616D-119/
DAT	A (D(I), I=1, 36) /	
*	-2.2609957504809195D	-001, 9.42081562700383155D-03,
1	-1.49536755984187802D-04,	1.24613963320156502D-06,
2	-6.39045965744392318D-09,	2.21890960327913999D-11,
3	-5.56117095057428569D-14,	1.05325321033603896D-16,
4	-1.56037512642376142D-19,	1.85758943621876359D-22,
5	-1.81582545084923127D-25,	1.48351752520362032D-28,
6	-1.02807867304478193D-31,	6.11951591098084481D-35.
7	-3.16254052247072083D-38,	1.43231001923492791D-41.
8	-5.73153269001571794D-45,	2.04114412037596793D-48.
9	-6.51082654027421986D-52,	1.87092716674546548D-55.
A ·	-4.86840272377170304D-59,	1.15255746301413424D-62.
B	-2.49309423104939269D-66,	4.94661553779641407D-70.
C ·	-9.03491422428568780D-74,	1.52410833743010928D-77.
D	-2.38179143214581853D-81,	3.45788535445095606D-85.
E ·	-4.67597749080589054D-89,	5.90401198334077089D-93.
F	-6.97626371657895650D-97,	7.73078869301746066D-101.
G ·	-8.05038914195299455D-105,	7.89253837446372014D-109.
н .	-7.29777011046113744D-113,	6.37471183653139190D-117/
DAT	A(C4(I), I=1,19) /	
*	.10416666666666666660000.	5876374421296296294D000.
*	2290716053934337712D001.	5115246914604383039D001.
*	9062847663874030839D001.	14134204350396378960002
*	2032967817611733257D002.	27649485411187761090002
*	3609376712592949187D002.	45662621146185479160002
*	5635611849738394099D002.	6817431262327333036D002
*	8111724483308463849D002.	95184947011821749270002
*	1103774469890957246D003.	1266948822584689090003
*	1441391353710093869D003.	16273270737519703760003
*	1826444261146441383D003/	
DATA	A(D4(I), I=1.19) /	
*	14583333333333333333D000.	52426938657407407340000
*	2190010740010626122D001.	49862280807822504170001
*	8910269876251375731D001.	13961075131923849560002
*	2013810597032928847D002.	27441048801201192110002

	- 25860702054434667370002	4542393171194671533D002,
114	*35869703054454007576002,	67908743957298515690002.
115	*55103535448057570000002,	94894955810820384810002
116	*80839198029929514380002,	12628233054257933230003
117	*11007598935585749100003, -	16241252560510209670003
118	*14381582552263232700003,	.16241253500510208070005;
119	*1826430810500566861D003/	
120	DATA(C5(I), I=1,19) /	
121	*802083333333333322D000, -	.2285545023696682453D001,
122	*3778635359389885240D001, -	.52746231607110598620001,
123	*6771926170404923857D001, -	.8269954941340274075D001,
124	*9768433620097970692D001, -	.1126721374768006806D002,
125	* 1276620743800279721D002, -	.1426535892246475774D002,
126	* - 1576463088778327385D002	.1726399730395179650D002,
107	* - 1876343942052581175D002	·2026294344140785724D002,
127	+ - 2176249668603070326D002	.2326204842605378820D002,
128	- 24761042850013399850002	,2625430055269059493D002,
129	+ _ 2772097924164600240D002/	and the second
130	= .277203732470400024000027	
131	- 6770022223333333220000	.2202914798206278015D001.
132	*0//08333333333333220000,	.5218010289498877822D001.
133		82241865333529918370001.
134	*6/2159261580/9301/50001,	11227766967105787810002.
135	*9/261/69556/85951290001,	14230176248921136010002
136	*12729075204990961410002,	17231939820272207020002
137	*15731119656707000070002,	20232302328193519550002
138	*18732661405573092580002, -	22224359923945613750002
139	*21733874940489829100002, -	26222529770990355710002
140	*24734046352953744400002, -	.20222528170880555710002;
141	*27586862583465528640002/	207 103 47 36 4 27.
142	DATA (ZMLA5(1), 1=1,17) / 1.E9,715.,	207., 103., 47., 50.4, 21.,
143	* 22.6, 18.5, 16.6, 14.7, 14., 12.9, 1	2.2, 11.5, 10.8, 5.2 /
144	DATA LA2, LA5 /36,17/	
145	DATA (ZMLA2(I), I=1,40) /	4 0 63080300-3
146	12.6944301D-12,4.7348244D-6,7.0803713D	-4, 9.03909320 - 3,
147	24.9271494D-2,1.5267301D-1,3.5324772D-	1,0.78352770-1, 005740100 E 015020700
148	31.1475215D0,1.7731141D0,2.5617749D0,3	.995/18100,5.215932700,
149	46.6020702D0,8.1490972D0,9.8514112D0,1	.232040501,1.491792301,
150	51.7163634D1,1.9540309D1,2.3030246D1,2	
151	63.3549744D1,3.7541246D1,4.0802980D1,4	.578493301,5.028713301,
152	75.3917166D1,5.9582285D1,6.4537858D1,7	.070137701,7.597847201,
153	88.0163399D1,8.6945766D1,9.2594255D1,9	.983446D1,
154	91.0575193D2,1.1039828D2,1.1820169D2/	f protection in the state of the
155	DATA C1 / 0.57735 026918962576D0 /	
156	DATA C2 / 0.66666 66666666666600 /	
157	DATA C3 / 0.86602 540378443864D0 /	PERFORMANCE PROFESSION AND CONTRACTOR
158	DATA PI / 3.14159265358979324D0 /	
159	DATA FPI12 / 1.30899693899574718D0/	
160	DATA CON4 / .7071067811865475244D0/	ALTRACE IS - ICIN, NO ILLA
161	A0 = 9.30436716929229427D-01	
162	B0 = 6.78298725144275871D-01	
163	C0 = 4.65218358464614714D-01	
164	D0 = 6.78298725144275871D-01	
165	K = 0.85366721883895156D0	
166	ZMSQ = ZR*ZR + ZI*ZI	
167	RZR = ZR	
168	TEMP = ZI	
169	IF (TEMP .LT. O.) TEMP = -TEMP	
170	IF (RZR .LE. 0.) GO TO 51	

171 172		IF (RZR .GT. 4.4) GO TO 120 TEM1 = 72632 * RZR**2
173		IF (TEMP .GT. TEM1) GO TO 120
175	51	IF (RZR . IT9.) GD TD 120
176		TEM1 = 4.4 + .1375 * RZR
177		IF (TEMP .GT. TEM1) GO TO 120
178	53	FLPS = 1
180		STORE1 = $ZR * ZR - ZI * ZI$ STORE2 - 2 * ZP * ZI
181		XR = STORF1*ZR - STORF2*7I
182		XI = STORE1*ZI +STORE2*ZR
183		DO 55 MLS=1, LA2
184	55	IF (ZMSQ - ZMLA2(MLS)) 62,62,55
186	62	FR = AO
187		FI = 0.0
188		XPR(1) = XR
189		XPI(1) = XI
190		DO 65 M = 1, MLS
192		$FI = FI + \Delta(M) * XPI(M)$
193		XPR(M+1) = XR * XPR(M) - XI * XPI(M)
194		XPI(M+1) = XI * XPR(M) + XR * XPI(M)
195	65	CONTINUE
190		GR=B0
198		DD 72 M = 1 MIS
199		GR=GR+B(M)*XPR(M)
200		GI = GI + B(M) * XPI(M)
201	72	CONTINUE
202		$X = 2R \times GR - ZI \times GI$
204		GR=X
205		SR=-C1*(GI-FI-FI)
206		SI=C1*(GR-FR-FR)
207		H2R=GR-SR
209		$H_{21}=G_{1}-S_{1}$
210	120	FLPS = 0
211		ZM = DSQRT(ZMSQ)
212		ZRT2M = DSQRT(ZM)
213		IF $(2R, LT, 0.D0)$ GO TO 125 7PT2P - DSOPT (0 ED0 + (7D + 7M))
215		ZRT2I = 7I / (7RT2R + 7RT2R)
216		Z32R = ZR*ZRT2R - ZI*ZRT2I
217		Z32I = ZR*ZRT2I + ZI*ZRT2R
218	105	GO TO 130
220	125	ZRIZI = DSQRI (0.5D0 * (ZM - ZR)) IF (ZI IT 0 D0) ZPTOIZPTOI
221		ZRT2R = ZI / (ZRT2I + ZRT2I)
222		Z32R = ZR*ZRT2R - ZI*ZRT2I
223		Z32I = ZR*ZRT2I + ZI*ZRT2R
224		ZM1R = DABS(Z32I) IF (ZM1P I I I I I) CO TO 100
226		R = (TLIM / ZM1R)
227		Z32R = Z32R * R
228		$\mathbf{R} = DCBRT(\mathbf{R})$
-----	-----	--
229		ZRT2R = ZRT2R * R
230		ZRT2I = ZRT2I * R
231		ZRT2M = ZRT2M * R
220		R = R * R
232		7M = 7M * R
233		7MSO = 7M**2
234		7D - 7D + R
235		ZR = ZR + R
236		$Z_1 = Z_1 + R$ $Z_1 = Z_1 + R$ $Z_2 = Z_1 + R$ $Z_2 = Z_2 + R$ $Z_2 $
237	130	2RT4R = DSQRT (0.500 + 7PT2T / 7RT4R)
238		ZRT41 = 0.500 * ZRT21 / ZRT1
239		ZRTM4R = ZRI4R/ZRIZM
240		ZRTM4I = -ZRI4I/ZRIZM
241		IF (ZR .GT. 0.) GU IU 210
242		IF (ZM1R .LT. TLIM) GO TO 210
243		ABK = ABS(K2)
244		IF (Z321 .GT. 0.) GO TO 205
245		K1 = K * EXPONT
246		K2 = K / EXPONT
240		732I = -TLIM
247		GO TO 220
240	205	K2 = K * EXPONT
249		K1 = K / EXPONT
250		732I = TLIM
251		CO TO 220
252	210	$K_{2} = C_{2} * 732I$
253	210	$K_2 = 02$ EULL
254		$S_2 = U (12)$
255		$K_2 = K^+ S_2$
256		$R_1 = R/32$
257	220	HR = FFITZ CZ = ZOZIII
258		
259		
260		STP = -C3 + CTHR = 0.5 + CTHR
261		CIP = -(3*SIR 0.3*OIIIR
262		IEMP = DABS (232R)
263		TEM1 = DABS (2321) TEM1 TEM1 TEMP = TEM1
264		IF (IEMP .LI. IEMI) ILMP - ILMI
265	230	DO 235 ML = 1, LAS
266		IF (TEMP .GT. ZMLAS(ML)) GO TO 200
267	235	CONTINUE
268	250	CONTINUE
269		YR = Z32I
270		YI = -Z32R
271		CALL CFR (YR, YI, F2R, F21, C4, C5, ML)
272		CPR = F2R
273		CPI = F2I
274		STORE3=K2*(ZRTM4R*F2R-ZRIM41*F21)
275		STORE4=K2*(ZRTM4I*F2R+ZRTM4R*F21)
276		H22R =STORE3*CTHR-STORE4*STHR
277		H22I =STORE3*STHR+STORE4*CTHR
278		IF (ZR) 280,270,270
279	270	FLQUAD =0
280		GO TO 300
200	280	IF (ZI) 290,310,310
201	290	FLQUAD = 1
202	300	H2R = H22R
203	550	H2I = H22I

285 286 287 288 289 290 291 292 293 294	310	GO TO 317 FLQUAD = -1 YR = -Z32I YI = Z32R CALL CFR (YR, YI, F1R, F1I, C4, C5, ML) CPR = F1R CPI = F1I STORE5=K1*(ZRTM4R*F1R-ZRTM4I*F1I) STORE6=K1*(ZRTM4R*F1I+ZRTM4I*F1R)
295 295 296 297		H21R=SIORE5*CTP-STORE6*STP H21I=STORE5*STP+STORE6*CTP H2R=H21R+H22R H2I=H21I+H22I
298 299 300 301	317 60 70	IF (IH .EQ. 2)GO TO 80 IF (FLPS .NE. 1) GO TO 320 H1R = GR+SR H1I = GI+SI
302 303 304 305	320 330	GO TO 362 IF (FLQUAD .LT. 0)GO TO 340 YR = -Z32I YI = Z32R
308 309 310	340	CALL CFR (YR, YI, F1R, F1I, C4, C5, ML) STORE7=K1*(ZRTM4R*F1R-ZRTM4I*F1I) STORE8=K1*(ZRTM4I*F1R+ZRTM4R*F1I) H11R=STORE7*CTHR+STORE8*STHR
311 312 313 314 315 316	350	H111=STORE7*(-STHR)+STORE8*CTHR IF (FLQUAD .LE. 0) GO TO 360 STORE9=K2*(ZRTM4R*F2R-ZRTM4I*F2I) STOR10=K2*(ZRTM4I*F2R+ZRTM4R*F2I) H12R = STORE9*CTP+STOR10*STP H12I = STORE9*(-STP)+STOR10*CTP H1R = H11R+H12R
317 318 319 320	360	H1I = H11I+H12I GD TO 362 H1R = H11R H1I = H11T
321 322 323 324	362 80 90	IF (IH .EQ. 1)GO TO 999 IF (FLPS .NE. 1) GO TO 380 FPR = CO FPI = 0.0
325 326 327 328 329	92	DD 92 M = 1,MLS FPR=FPR+C(M)*XPR(M) FPI=FPI+C(M)*XPI(M) X =-(STORE1*FPR-STORE2*FPI) FPI=-(STORE1*FPI+STORE2*FPR)
330 331 332 333 334 335 336 337 338 338 338	94	FPR = X GPR = D0 GPI = 0.0 DD 94 M = 1,MLS GPR=GPR+D(M)*XPR(M) GPI=GPI+D(M)*XPI(M) SPR=-C1*(GPI-FPI-FPI) SPI=C1*(GPR-FPR-FPR) H2PR=GPR-SPR H2PL=GPL=CPL=CPL
340 341	380	GO TO 414 YR = Z32I

342		YI = -Z32R
343		CALL CFR (YR, YI, G2R, G2I, D4, D5, ML)
344		STOR11 = K2*(ZRT4R*G2R-ZRT4I*G2I)
345		STOR12 = K2*(ZRT4R*G2I+ZRT4I*G2R)
346		H22PR=STOR11*STHR+STOR12*CTHR
347		H22PI=STOR11*(-CTHR) +STOR12*STHR
348	390	IF (FLOUAD .LT. 0) GO TO 410
349	400	H2PR = H22PR
350	100	H2PI = H22PI
351		GO TO 414
352	410	YR = -732I
253	410	YI = 732R
354		CALL CER (YR. YI. G1R. G1I. D4. D5. ML)
355		STOR13 = $K1*(ZRT4R*G1R-ZRT4I*G1I)$
355		STOR14 = $K1*(ZRT4R*G1I+ZRT4I*G1R)$
257		H21PR=STOR13*(-STP) -STOR14*CTP
259		$H_{21PI=STOR14*(-STP)}$ +STOR13*CTP
250		H2PR = H21PR + H22PR
360		H2PI = H21PI + H22PI
361	414	TE (TH EQ. 2) GO TO 999
362	100	TE (ELPS .NE. 1) GO TO 420
363	110	H1PR = GPR+SPR
364	110	H1PI = GPI + SPI
365		GO TO 999
366	420	TE (FLOUAD .LT. 0) GO TO 440
367	430	YR = -7.321
368		YI = Z32R
369		CALL CER (YR. YI. G1R. G1I, D4, D5, ML)
370	440	STOR15 = $K1*(ZRT4R*G1R - ZRT4I*G1I)$
371		STOR16 = $K1*(ZRT4R*G1I + ZRT4I*G1R)$
372		H11PR = STOR15*STHR -STOR16*CTHR
373		H11PI = STOR15*CTHR +STOR16*STHR
374	450	IF (FLQUAD .GT. 0) GO TO 470
375	460	H1PR = H11PR
376		H1PI = H11PI
377		GO TO 999
378	470	STOR17 = K2*(ZRT4R*G2R - ZRT4I*G2I)
379		STOR18 = K2*(ZRT4R*G2I + ZRT4I*G2R)
380		H12PR = STOR17*(-STP) +STOR18*CTP
381		H12PI = STOR17*(-CTP) -STOR18*STP
382		H1PR = H12PR+H11PR
383		H1PI = H12PI+H11PI
384	999	CONTINUE
385		RETURN
386		END

PRT,S J.CFR

1 2 3		SUBROUFINE CFR(X, Y, SF IMPLICIT DOUBLE PRECISI DIMENSION A(1), B(1)	R, SI, A, B, M) Ion (A-H,O-Z)	
4 5 6		SR = 0.D0 SI = 0.D0 D0 10 J = 1,M		
7 8 9		I = M - J + 1 TEMR = X + SR + B(I) TEMI = Y + SI		
10 11 12		TEMP = A(I) / (TEMR**2 SR = TEMR * TEMP SI = -TEMI * TEMP	+ TEMI**2)	
13 14 15	10	CONTINUE SR = SR + 1.D0 RETURN		
16		END		
			A LEAST A LEAS	

1 SUBROUTINE HZERO(PARTR, PARTI)	
2 IMPLICIT DOUBLE PRECISION (A-H, O-7	Z)
3 DOUBLE PRECISION PARTI, PARTR, K	2, IMZ12
4 COMMON /AHZERO/ HZEROR.HZEROI	in acted
D2 = PARTR**2 + PARTI**2	
6 8 K2 = .7978845608*EXP(PARTI)	
7 $D = SQRT(D2)$	
8 RLZ12 = $(SQRT((PARTR + D)/2.))/D$	
9 IF(D - PARTR) 9,9,10	
10 9 IMZ12 = 0	
11 GO TO 11	
12 10 $IMZ12 = (SQRT((D - PARTR)/2.))/D$	
13 11 COST = COS(PARTR)	
14 SINT =-SIN(PARTR)	
15 HZEROR = K2*(RLZ12*COST - IMZ12*S	SINT)
16 HZEROI = K2*(IMZ12*COST + RLZ12*S	SINT)
17 RETURN	
18 END	

inter en als gabres al pipeles.

The extract of the previous for versely painted flooring but O(C) 84408 proport of the second of the formation of the formati

When key if a 2, propagation lines for 28 addieutifications provins and an analytic line and the construction of k reprint and k reprint and branching the lines and an part for other projects with a formula of (1, 2, 2573, 4). Hade have study from by definition form 140. The formula discover formula to tender of a difference (0, 1 to 1800, 14).

is huma any §, it () fears for up to 15 mereiper signifie programmer or one tais fut mer merges () legis entres , is for stead is a must will pictifien gaugenet. Then and an end with format of 1567 () and inval sing to assumered from 140.

shipping diale indicate to the state back that the

APPENDIX B: SAMPLE RUN

This appendix gives a brief discussion of the input-output, then lists an input deck and shows the resulting output. The input deck is really three separate runs that are stacked to run consecutively. The input to a single run consists of several parts given in table B1. The table gives the number of cards and the location of the FORTRAN input statements in Program MAIN. The last three of these are open-ended. That is, more modes, receiver depths, or ranges are read in until a blank card specifies the end of the list. A blank range card sends the program back to the beginning. A negative range sends the program back to read a new source and new receivers after reading another key card. The program halts when a blank "n and freq" card is encountered.

Table B2 gives most of the functions of the key card by which integers are read into control keys 1–9. Some of these will require additional information, which is read in immediately following the key card.

The output of the program is usually printed through FORTRAN print statements. Cards are also punched when key 5 is 10 or key 8 is 2, 3, or 4. In the first case each card contains a complete eigenvalue that can be read into future runs.

When key 8 = 2, propagation losses for 25 consecutive ranges per card are punched for each receiver depth, with a maximum of 5 receiver depths. The losses can be read into a plot program with a format of (5X,25F3.1). Each loss must then be subtracted from 140. This format allows losses to tenths of a dB from 40.1 to 140.0 dB.

When key 8 is 3, losses for up to 26 receiver depths are punched on one card for each range. These cards can be used in a contour plotting program. They can be read with a format of (26F3.1) and must also be subtracted from 140.

Input	Function	Number of Cards	Location in Program MAIN
Control keys	Selects options	1 or more	37-65
n and freq	Determines number of layers and fre- quency; also halts program	1	66
Profile	Specifies depths, sound speeds, gradients, attenuations, and densities	7	71-85
Modes	Searches for or specifies modes	1 or more	224
Source and receivers	Specifies a source depth and one or more receiver depths	2 or more	461-463
Ranges	Specifies a sequence of ranges; also directs continuation	1 or more	616

Table B1. Input cards to the normal mode program.

Key	Setting	Effect	Function Affected
1	0	No output Print Plot on printer	Depth functions
2	0 1	Print losses Contour on printer	Propagation losses
3	$\begin{vmatrix} 0 \\ 1 \\ k > 1 \end{vmatrix}$	No output Print all interfaces Print interface k	Reflection coefficients
4	k > 0	Change levels and symbols	Contour on printer
5	0 1 k+10	Sum only those given Add to existing sum Punch modes on cards	Number of modes
6	0 1 2	Long print Short print Shortest print	Steps in mode iteration
7	0 1	Phased addition Random-phase addition	Mode sum
8	1 2	Change T-lim Punch losses for up to 5 receivers	Loss plot input
	3	Punch losses for up to 26 receivers	Contour plot input
9	0 k	No effect Use only 1st k modes	Number of modes

Table B2. Functions of the control keys.

The first profile in the input-output is a surface duct, 100 m deep. For the 500 Hz frequency, 3 modes are found by searching from a phase velocity of 1520.5–1523 m/s. Two additional modes are found by extrapolation. Forty receiver depths are then specified from 3 to 120 m, and propagation loss contours are drawn for a source at a depth of 20 m. The modes are added in random phase, and loss contours of 80, 90, and 100 dB are requested to be represented by the symbols 8, 9, and 0. A negative range then causes the program to read new control keys, source and receivers. The depth functions are then printed out as amplitudes and phase angles and propagation losses are computed.

The second profile consists of two negative gradients over two layers of sediments in shallow water. A velocity discontinuity exists at the top of each sediment layer. Negative numbers in the input for the attenuation at the bottom of the sediment layers serve as flags to request that the gradients at the top of the layers have no imaginary parts and that the attenuation at the bottom will be whatever results from this. The change in ImC from 37.9 to 23.7 in the deeper sediment layer indicates that the attenuation changed by about 60 percent through the layer.

A final layer of negative sound speed gradient must always be added. A gradient of -0.1 is chosen here for the top of this layer.

The first three modes are determined by reading in approximate values. The magnitudes of the depth functions are plotted on a log scale at 2-m depths from 30 to 80 m. Reflection coefficients are computed at interface 2, which is the water-sediment interface.

The final profile is a deep-water profile with a 40-m deep sediment layer. The attenuation increases from 2 dB/km to 2.5 dB/km through this layer. The first mode, the first bottom-reflected mode, and a higher bottom-reflected mode are found. Each step of the mode iteration is printed out. Reflection coefficients are again computed. The amplitudes and phase of the depth functions are printed out at 500-m depth and at each even 1000-m depth for a 100-m source depth.

On the last two profiles, a much larger set of modes is required to compute correct propagation losses.

The sample run given here required 6 seconds on a UNIVAC 1110, Exec 8 operating system. The cost of the run was \$1.20.

NORMAL*MODE	(0).INPUT INPUT DEC	K STARTS A	T LINE 3,	ENDS AT L	INE 65.				
2	123456789	123456789	123456789	123456789	12345678	9	123456789	123456789	123456789
4	100	00	80	-1000					
5	100.	50.	80.	1000.					
5	0								
6	098								
7	2 500.								
8		100.							
9	1520.								
10	0								
11.	.017	1							
12	0								
13	0								
14	0								
15	-1520 5		1522			30			
16	-1		1525.			30			
10	-1.					~			
17	0								
18	10.		-						
19	3.	120.	3.						
20	0								
21	4000.	100000.	4000.						
22	-1.								
23	1								
24	10.								
25	30.	120.	30.						
26	0								
27	5000	100000	5000						
29	5000.	100000.	5000.						
20	· _	0							
29	E 4500	2	1						
30	5 1500.	-	-						
31	0.	51.	73.	73.3	373.3				
32	1542.2	1536.8	1606.45	1684.					
33		1523.42							
34			1.5	1.5	1				
35			.12	.73	.73				
36			-1.	-1.					
37			1.68	1.91	1.91				
38	1527.18	.16							
39	1530.64	.13							
40	1533.49	.11							
41	0	• • •							
42	60								
12	20	80	2						
43	30.	80.	2.						
44	0								
45	0								
46	1	6							
47	8 100.								
48		55.	146.	402.	960.		2286.	4390.	4430.
49	1544.9	1542.6	1517.9	1495.0	1483.2		1497.8	1541.7	
50							1533.4		
51								1.	1
52								. 02	.025
53								.025	
54								1.54	2.5
55	-1483 5		1484 5			10			
56	-1533 4	1	1534 4			10			
	1000.4	• •	1334.4			. •			

57	-1600.	.2	1602.		10	1.1.6			
58	0								
59	100.								
60	500.								
61	1000.	5000.	1000.						
62	0								
63	0								
64	0								
65	0				102455790	103456789	123456789	123456789	
66	123456789	123456789	123456789	123456789	123450785	123430703	120400100		

(EVS 0 1 0 1 2 LAYERS 500 0 H7	0 1 1 2 0				
1520.00000 100.0 1520.00000 00000 00000 000000000000000000	00000				
	00000				
RE M IN	1 M L/KM	1520.00000	IM C RE C BO .000000 1521.702	TOM IM C BOTTOM 16 .000000 .01	GRADIENT
1520.500 .000	00000 .00000 .16061+003	1521.70285	.65010+001 .000	000000. 00	00000.
1520.583 .000 1520.667 .000	. 12071+002	.59662+001	.35987+001		
1520.750 .000 1520.833 .000	. 20274+001 . 88666-001	.12104+001	.74991+000		
1520.917 .000 1521.000 .000	.65065-001	21599+000	13569+000		
.15209166667+004	.00000000000 3628536937-003	2160+000135 9521-014600	7+000 .2184+000 13-014 5345-022	.0000	
= 233 0 -68					
= -223 0 0	0				
I= 1 LAMBDA = .2	065655+0149283	331-06 D=4937	188+02 .1698935+00	INT RANGE = 0. L/K =	.00428
1520.953 .000	.14432+000	31942+000	20563+000		
1521.120	21725+000	- 383174000	- 26539+000		
1521.203	.13931+000	30074+000	22105+000		
1521.287 .000	.68182-001	20341+000	16373+000		
000. 0751.370 1521 453	47194-001	11266+000	- 56732-001		
1521.537 .000	.49825-003	.14984-001	16545-001		
1521.620 .000	.25922-002	.49104-001	.13453-001		
.15215366524+004	.36285586937-003	.1498-001165	35-001 .2592-002	. 0000	
.15215320352+004	.33379340870-001	.3642-015 .208	31-015 .1058-020	.0000	
= 411 89 -14	27				
000.000.000.000.					
I= 2 LAMBDA = .2	2064756+0145296	558-04 D=4419	3460+02 . 701 3564+01	INT RANGE = 6991. L/K =	. 39345
1521.615 .033	20449-002	.38891-001	.23074-001		
1521.699 033 1521.782 033	66370-002	. 60096-001	100-016194		
1521.865 .033	.64766-002	.63289-001	.49711-001		
1521.949 .033	.51912-002	.52365-001	.49488-001		
1522.032 .033	35740-002	.37214-001	.46789-001		
1522.115 .033	.22152-002	. 20244-001	.42489-001		
1522 JB9 035	200-2/621.	- 12314-002	31482-001		
1522.365 .033	. 13140-002	25737-001	.25527-001		
.15222820352+004 .15222575167+004	.33379340870-001 .21101619027+000	1231-001 .314 .6334-016 .273	18-001 .1314-002 39-017 .1810-020	0000.	
c = 605 564 45 1	173			Lot actives a state fight	

3263. L/K =10.33018 4428. L/K = 5.98978 6385. L/K = 2.48490 .3160372+01 INT RANGE = 5+02 .8311493+01 INT RANGE = -.82123-003 -.77326-003 -.39025-003 -.92158-004 .5114411+01 INT RANGE = 00000. 0000. 21.00 45.00 69.00 93.00 .3366-024 .1789-002 18.00 42.00 66.00 90.00 -.2457285+02 .1860-001 -.1425623+02 -.2996-003 -.9215171+01 15.00 39.00 63.00 87.00 -.2860812-03 D= -.245 202-003 -.15210-001 319-003 -.2543-001 -.36433-001 933-002 -.42300-001 -.2374-001 -.7307-002 -.6895903-03 D= -.1189291-02 D= 12.00 36.00 60.00 84.00

 Z = 885 1360
 .53327340407+000

 Z = 885 1360
 131

 Z = 428 1360
 131

 Z = 428 1360
 0

 0
 .000

 .000
 .000

 .000
 .000

 .23202-003 .75319-003 .13283-002 .17893-002 9.00 57.00 81.00 .92837597939+000 .88008242577+000 721 .2063772+01 .211 .23 .2060427+01 6.00 30.00 54.00 78.00 0 0 211 Z = 148 564 0 .000 .000 .000 .000 N= 3 LAMBDA = .2 1522.341 .211 SOURCE AND RECEIVERS 10.00 3.00 24.00 27.00 72.00 75.00 96.00 99.00 .15246739840+004 .15247283934+004 Z = 1265 2344 248 Z = 808 2344 0 .000 .000 .000 .000 1522.424 1522.508 1522.591 10.00 24.00 48.00 72.00 96.00 H

.448-0 3 -78.8365	.403-02 66.9433	.146-01 222.9555	.358-01	.677-01 159.3411		
.143-02 -4.0388	.847-02 172.8414	.197-01	.316-01 201.6754	.455-01 42.6473	75.1 78.8 77.7 78.8 77.7 84.2 86.0 92.9 89.7 94.5 87.6 95.0 91.7 100.8 95.4 102.0 95.1 104.2 95.1 114.2 95.1 104.2 95.1 114.2 95.1 114.2 95.1 114.2 95.1 114.2 102.6 119.6 103.2 119.6 104.5 1112.3 105.1 115.9 104.5 113.6 104.6 113.6 104.8 113.6 104.8 113.6 104.8 113.6 104.8 113.6	
.716-02 0318	.128-01	.768-02	.221-01 22.5897	.221-01 -70.1573	S IN SUM 68.7 70.3 772.7 85.1 772.7 85.2 777.5 81.7 777.5 81.7 777.3 88.4 777.3 88.4 777.3 88.4 777.3 88.4 777.3 88.4 779.9 84.1 799.9 84.1 81.7 81.7 81.7 81.7 81.7 81.7 81.7 81	
.151-01	.625-02	.244-02 269.9452	.138-01 209.0704	.213-01	5 MDD 5 2000. 150000. 150000. 220000. 220000. 3350000. 440000. 550000. 550000. 770000. 770000. 750000. 8800000. 950000. 5 MDD 5 MDD	

									INT.	00000	00000	00000	00000	.00000					
									GRADIE	10644	61622	1.50000	1.50000	10000	/K = 5.68572		./K = 4.57613	./K = 3.93583	
									IM C BOTTOM	.00000	.00000	5.67131	23.72336	.00000	NGE = 0. L 4.02 DEGREES.		NGE = 450. L 5.57 DEGREES.	NGE = 550. L 6.57 DEGREES.	
									RE C BOTTOM	1536.80000	1523.42000	1606.45019	2467.43825	.00000	148-016 .0000 197-013 .0000 1058118+07 INT RAN GREES, GR A = 4	197-013 .0000 050-015 .0000	9252135+03 INT RAN GREES, GR A = 1	050-015 .0000 069-012 .0000 6103755+06 INT RAN GREES, GR A = 0	42.00 58.00 74.00
	1	373.30000	.0000	10000	.73000	.00000	1.51000		IN C	. 00000	.00000	5.67131	37.55189	81.52581	2950-004 .1 6792-006 .1 0 850630+67 .	2117-005 .1 2047-005 .2' *	1104669+C4 .	1760-004 .2 3391-006 .8 * 0 0 074773+C7 . 0 **	00 40.00 56.00 72.00
		73.30000 1684.00000	.00000	1.50000	.73000	-1.00000	1.91000		RE C	1542.20000	1536,80000	1606.00000	1684.00000	2467.43825	2525-004 .1348-008 -9189 -177**** -6607 0 48-037 000 48-03 052	.1114-005 .6485-010 . -9219 -176**** -6637 0 6 .236 .000	02-03 D=4	2482-004 4059-008 2242 -176**** -6660 0 55.235.000 31-03 D=2	36.00 38. 52.00 54. 68.00 70.
0		1506 00000	.00000	1.50000	.12000	-1.00000	1.68000		L/KM	.00000	.00000	180.00229	1095.01391	1095.01391	000000+000 647471+000 49-1469 -749 61-1469 -854 537 -237 -23 +01 -65458	000000+000 622218+000 49-1482 -749 61-1481 -854 236 .236 .236	+0152684 761 DB, OR -	000000+000 008086+000 49-1490 -749 61-1489 -854 235 235 235 231 234 DB, OR	34.00 50.00 66.00
2 0 0 1	500.0 HZ	51.00000 1536 R0000	1523.42000	.00000	.00000	.00000	.00000	D1 DB/KM	IM W	.00000	.00000	00042	-2.58229	-1.30290	+004 .16000 +004 .16198 -490 83 -7 194 83 -7 194 83 -7 195 -7 107 335 - 6171335 * 0.6 10	+004 .13000 +004 .13096 -312 66 -7 372 66 -7 5 .236 .236 .	= .6157371 YD, R = 2.1	+004 .11000 +004 .11306 -167 57 -7 517 57 -7 512 5235 -235 *0. R = 2.23	IVERS 0.00 32.00 6.00 48.00 2.00 64.00
EYS 2 0	5 LAYERS, 15	1542.20000	.00000	.00000	.00000	.00000	.00000	TTEN =. 99703-00	RE M	-8.81029	-6.84816	.12021	114.58114	39.43319	.15271800000 .15271861943 .15271861943 .15271861943 .257 .257 .237	.15306400000- .15306495580- = -750 215 = -750 215 .236 .236 .236	T DEPTH 73.	.15334900000 .15334940269 = -543 185 .235 .235 .235 .235 .235 .235 .235	OURCE AND RECE 60.00 3(44.00 46 60.00 62

2286 .00000 4390 .00000 4430 .00000 1497 .80000 1541 .70000 4430 .00000 1531 .40000 1541 .70000 000000 000000 1500000 100000 1000000 100000 100000 100000 100000 150000 250000 150000	RE C BOTTOM IM C BOTTOM GRADIENT 1542.60000 -000000 -00191 00000 1517.90000 -000000 -29152 00000 1495.20000 -000000 -29152 00000 1493.20000 -000000 -02140 00000 1493.20000 -000000 -02140 00000 1533.40000 -000000 -11634 00000 1533.32718 1.14838 1.00000 -00000 1533.32718 1.14838 1.00000 -00000 1533.32718 1.14838 1.00000 -00000 1533.40000 -000000 -10000 -00000 199 10000 -000000 -10000 -00000 199 10000 -000000 -00000 -00000 199 10000 -00000 -00000 -00000 -00000	30+039 .0000 30+039 .0000 44-005 .0000 96-008 .0000 00-012 .0000 00-012 .0000 00-12 .0000 00-12 .0000 1355 -44 0 0 2355 .235 .000 0 275428+23 INT RANGE = 0. L/K = .00000 275428+23 INT RANGE = 0. L/K = .00000 200 00 00 00 00 00 00 00	46-001 .0000 46-001 .0000 39-003 .0000 11-007 .0000
960.0000 1483.20000 00000 00000 00000 00000 00000	- 16 C C C C C C C C C C C C C C C C C C		.1047+000 .1881-001 .1055-001 .1464-003 .5031-006
402 .00000 1495 .00000 .00000 .00000 .00000	RE C 1544.90000 1547.60000 1547.90000 1497.90000 1485.200000 1483.200000 1583.200000 1583.20000 1583.20000 1583.20000 1583.20000 1583.171000 23856401 23856401 23857401 23857401 23827401 23827401 22927401 2292740000000000000000000000000000000000	- 1565+018 - 1525+018 - 1225+018 - 16295+018 - 1691+014 - 1691+014 - 1691+014 - 1691+014 - 1691+014 - 2877+010 - 173294-00 - 19327-000 - 141802+000 - 13327-000 - 132833-000	.9333-001 - 3138-002 - 2196-002 - .4164-004 - 4671-006 -
0 0 0 0 0 146.00000 11517.90000 00000 00000000000000000000000000	L/KM -000000	0000000 1756017-005 3211278-006 01050906-017 0381520-011 2722238-014 2722238-014 272238-014 272238-014 12168-001 -4750 0 750 12158-001 -42744-001 -42689-001 -42689-001 -21506-001 -21506-001 -21506-001	0000000+000 0000000-017 0000000-017 6880921-003 9352756-003
6000 1000 Hz 555.00000 1542.00000 .00000 .00000	MM MI 100000 100000 100000 100000 100000 100000 1000000	00000 00000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000	0+004 .1000 ++004 .1000 1+004 .1000 ++004 .8322 ++004 .8117
KEYS 1 0 8 LAYERS, 1544.90000 1544.90000 00000 00000 00000 00000 00000	RE 8: 118 99-14 RE 8 -1.14298 -3.55888 -3.55888 -9.57769 18.29300 18.29300 18.29300 18.29300 18.29300 18.29300 1483.500 1483.600 1483.600 1484.000 1484.000 1484.200 1484.300 1484.300	.1484200 0000 .1484165 3115 .1484174 7321 .1484174 6342 .1484174 6342 .1484174 6342 .1484174 6352 .1484174 6352 .1484174 6352 .1484174 6352 .1484174 6352 .235 .235 .235 .235 .1533 .500 .1533 .500 .1530 .500 .1530 .500 .1530 .500 .1530 .5000 .1530 .50000 .1530 .50000 .1530 .50000 .1530 .50000000000000000000000000000000000	.15338000000 .15337624954 .15337554931 .15337464534 .15337465782

.26631 .00188 Ħ 367. L/K = 459. L/K 16.66 DEGREES. 1.22 DEGREES. 11 235 .235 .235 .235 .000 9+C3 .5003842+00 INT RANGE -7.331 DEGREES, GR A = 16.66 0 -271 00000. .000 461 0 -56 -59 .1827-020 .4681-003 .1626-002 .4729-006 .1818-009 .2514-016 .1827-020 333 .38613-010 .46101-010 .35116-010 94 .19598-010 .68444-011 .183-10 28.8081 .000+00 5000.00 86 98 -. 1934-010 .650-03 00+000 269.9995 4000.00 -.38024-010 -.58288-010 -.55476-010 -.34234-010 -.60615-011 .4320-012 3000.00 .000+000 .161-03 .48884-020 .52029-020 .24051-020 .83588-022 .13258-001 .11330-002 .60957-020 .62615-020 .29078-020 .37426-021 .18268-020 .10792-001 1000.00 2000.00 .200000000000+0000 .249-03 .000+00 0 1170 5 .235 .235 .4096625+00 AT DEPTH 4390. YD. R = 1533.847 .001 1533.947 .001 1533.947 .001 1534.147 .001 1500.000 1500 .200 1600.200 .200 1600.600 .200 1600.600 .200 -.0002 .0053 .125 . 152-14 . 356-03 230 235 235 235 1 4390 .235 .235 .235 .235 .235 = 3 LAMBDA = ... SOURCE AND RECEIVERS 100.00 500.00 .16006289693+004 .16006289822+004 .16006289822+004 Z = 2620 55 772Z = 2734 55 1128.16006293949+004 .16006000000+004 .16006271212+004 .16006062469+004 1601.029 1601.229 1601.429 1601.629 .0574 .172-20 -.0002 .345-03 1600.829 .235 .235 -444 IN H # = N

0

0

.242-03

.561-03

.376-03 -13.4081

.453-03

.469-03 .431-03 -.4893 182.1377 3 MODES IN SUM

BRKPT PRINTS

APPENDIX C: HANKEL FUNCTION PARAMETERS

This appendix gives the FORTRAN statements for two programs associated with the modified Hankel functions. Program PWRTRN computes the power series coefficients, d_m , from eq (57), then determines the truncation points from eq (59). The truncation points for the other three sets of coefficients can be determined by changing line 9. Different computer word lengths can be accommodated by changing line 16.

The second program, CFC, determines the asymptotic series coefficients C_m from eq (72), then determines the continued fraction coefficients as indicated by eq (81)-(83). The second set of coefficients can be determined by changing the 4 in line 11 to a 16.

	PROGRAM PWRTRN
C **	THIS PROGRAM DETERMINS TRUNCATION POINTS FOR THE POWER SERIES.
•	IMPLICIT DOUBLE PRECISION (A-H, O-Z)
	DIMENSION D(50), ALOGD(50)
	D(1) = 1
	A = C = C
	P = 3.
	$P(T_{1}) = 2,30$
	D(1) = D(1-1) / 1 / (1-2)
	P = P + 3.
	ALOGD(1) = ALOGTO(D(1))
50	CONTINUE DE ALOCH
	PRINT 60, D, ALUGD
60	FORMAT (10E12.6)
	DH = 18.
	M = 1
	DO 10 K = 2,50
30	P = M - K
	Z = (ALOGD(K) - ALOGD(M) + DH) / 3.7 F
	IF (P.GT1.1) GO TO 20
	A = ALOGD(M) - ALOGD(M+1) - 3. * 2
	IF (A .GT. 0.) GO TO 20
	M = M + 1
	GO TO 30
20	L = K - 1
	MM = M - 1
	AZ = EXP (Z * 2.3025851)
	AZSQ = AZ * AZ
	PRINT 40. L. MM, Z. AZ, AZSQ
40	FORMAT (215. 4E15.8)
10	CONTINUE
	END

1		PROGRAM CEC
2	C **	THIS PROGRAM COMPUTES & SET DE SERIES COFFEICIENTS AND THEN
3	C **	COMPLIES THE CORRESPONDING CONTINUED FRACTION CREETCIENTS
4	•	
2		$\frac{1}{10} \frac{1}{10} \frac$
5		DIMENSION CUEF(21,23,3), CHECK(20), C(82), S(10), A(20), B(20)
6		C(1) = 1.
7		BUTTOM = 1.
8		TOP = 1.
9		DO 2 I = 1,45
10		X = 48 * I
11		Y = 9 * (I + I - 1) * * 2 - 4
12		C(I+1) = C(I) * Y / X
13	2	CONTINUE
14		PRINT 20. $(C(I), I = 1.40)$
15	20	FORMAT (5G20.9)
16	11	FORMAT (/)
17	••	$D_{1} = 100 T_{-1} = 1.11$
19		
10		COEF(1,1,3) = 0.
19		COEF(1, 1+1, 3) = 0.
20		COEF(1, 1+2, 3) = 0.
21	100	CONTINUE
22		A(1) = C(2)
23		COEF(2,2,3) = 1.
24		DO 140 I = $3,21$
25		DO 110 $J = 2, I$
26		COEF(I,J,1) = COEF(I-1,J,3)
27		COEF(I,J,2) = COEF(I-2,J,3)
28		COEF(I,J,3) = COEF(I-1,J-1,3)
29	110	CONTINUE
30		LE (L. EQ. 3) GO TO 150
31		
30		
22		
33		
34		K = 1 - 3
35		DU 120 J = 3, I
36		K = K + 1
37		CON = C(K) * COEF(I,J-1,3) + CON
38		AT = C(K) * CDEF(I, J-1, 2) + AT
39		BT = C(K) * COEF(I, J-1, 1) + BT
40	120	CONTINUE
41		PRINT 160, CON, AT, BT
42		CHECK(I-2) = BT
43		A(I-2) = -(CON + C(K+1)) / AT
44	150	CONTINUE
45		CDN = 0
46		AT = 0
47		
49		
10		n = 1 = 2
50		
50		$\mathbf{N} = \mathbf{N} + 1$
51		CON = C(K) * COEF(I, J-1, 3) + CON
52		AT = C(K) * COEF(I, J-1, 2) + AT
53		BT = C(K) * COEF(I, J-1, 1) + BT
54	130	CONTINUE
55		PRINT 160, CON, AT, BT
56		PRINT 11

	B(I-2) = -(CON + A(I-2) * AT + C(K+1)) / BT
	DO 140 J = 2, I $B(I-2) + B(I-2) + B(I$
	COEF(I,J,3) = COEF(I,J,3) + A(I-2) + COEF(I,0,2) + D(I-2)
	* CDEF(I,J,1)
140	CONTINUE
	PRINT 20, A, B, CHECK
160	FORMAT (5G20.9)
	K = -2
	J = 0
	DO 30 M = 1,18,3
	J = J + 3
	K = K + 3
	PUNCH 200, $(A(I), I = K, J)$
	PUNCH 200, $(B(I), I = K, J)$
30	CONTINUE
200	FORMAT (5X, 1H*, 3(E21.15, 1H,))
	END
	140 160 30 200

APPENDIX D: MODE FOLLOWER PROGRAM IN FORTRAN

The FORTRAN statements of the Mode Follower program are given here. This is the main body of the program. The following auxiliary subroutines from appendix A are required: SETUP, DET, HANKEL, and CFR.

```
PROGRAM MFOLLO
       IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
       COMMON /INPUT/ Z(10),N,OMEGA,V,VI,GCU(10),GSQ(10),CAY(10),LAMBDA,L
      1AMBDI,G(10),RHO(10),GI(10),GSQI(10),CAYI(10)
       COMMON /DETMNT/ A(21,4),Q(21,4)
       REAL INCA, INCB, INCC, INCD, INCE, LAMBDA, LAMBDI
DIMENSION T(4), PV(4), W(8), WI(8), CB(10), CBI(10), C(10),
      1 CAY SQ(10), GAMMA(10), DPK(10), GCUI(10), CI(10), CR(10), PVI(4)
      2 , CAYSQI(10), SR(4), SI(4)
       CHNG = 1. / 8192.
       CHNGI = 0.
 4
       CONTINUE
C++ KO - TOTAL STEP LIMIT, K1, K2 PRINT KEYS, K3 = I KEEPS SAME PRUFILE
        FOR NEXT RUN.
C**
       READ 10, K0, K1, K2, K6, K3, TLIM, BLIM, RATIO, EX
PRINT 10,K0, K1, K2, K6, K3, TLIM, BLIM, RATIO, EX
 10
       FORMAT (514, 4E10.1)
       IF (TLIM .EQ. 0.) TLIM = 1.E-5
       IF (BLIM .EQ. 0.) BLIM = 1.E-2
       IF (EX .EQ. 0.) EX = 28.
RLIM = 10.**EX
       IF (RATIO .EQ. 0.) RATIO = 2.
       IF (K0 .EQ. 0) K0 = 300
IF (K3 .NE. 0) GO TO 128
30 READ 1240, N, FREQ , ATTEN C** STOP IF N = 0. THIS IS THE ONLY PROGRAMED STOP.
       IF (N.EQ.0) GO TO 1200
       PRINT 1250, N, FREQ
C** PARAMETERS READ IN BELOW ARE THOSE AT THE TOP OF EACH LAYER.
C** READ IN VELOCITIES.
       READ 1260, (C(I), I=1, N)
       PRINT 1280, (C(I), I=1,N)
C** READ IN DEPTHS.
       READ 1260, (Z(I),I=1,N)
PRINT 1280, (Z(I),I=1,N)
C** READ IN GRADIENTS
       READ 1260, (GAMMA(I),I=1,N)
PRINT 1280, (GAMMA(I),I=1,N)
C** READ IN ATTENUATION FACTOR IN LOSS PER KILOMETER.
       READ 1260, (DPK(I), I=1, N)
PRINT 1280, (DPK(I),I=1,N)
C** READ IN DENSITIES (BLANK INPUT IMPLIES SEA WATER DENSITY).
       READ 1260, (RHO(I), I=1, N)
       PRINT 1280, (RHO(I), I=1,N)
 128
       CONTINUE
       NUMBER =
       JX = 0
C** NX = VARIABLE, NY = LAYER NUMBER, NZ = CONTINUITY
READ 119, NX, NY, NZ, PK, VALL, DP, V, VI, STEP, STEPI
       PRINT 21, NX, NY, NZ, PK, VALL, DP, V, VI, STEP, STEPI
      FORMAT (312, 4X, 7D10.2)
FORMAT (10H VARIABLE,12, 10H LAYER NO, 12,12H CONTINUITY
 119
 21
      * I2, / 7G15.5)
       PK = PK - DP
C** START NEW CYCLE BY INCREMENTING VARIABLE.
 107 PK = PK + DP
```

56

<pre>58 C+* CHECK IF DESIRED LIMIT OF VARIABLE HAS BEEN REACHED. 59 108 IF (PK .LT, VALL) GO TO 3 60 GO TO 133 61 109 IF (PK .GT, VALL) GO TO 3 62 133 GO TO (131,101,102,103,104,105),NX 63 131 FREO = PK 64 GO TO 106 65 101 C(NY) = PK 66 IF (NZ .NE. 0) GO TO 106 70 135 GAMMA(NY) = 0. 71 GO TO 106 72 102 Z(NY) = PK 73 IF (NY .LT, 2) GO TO 106 74 IF (NY .LT, 2) GO TO 106 75 110 Z(NY) = PK 75 IF (NUMBER .EQ. 1) GO TO 106 76 C(NY) = 0. 77 GO TO 106 77 GO TO 106 78 103 GAMMA(NY) = PK 79 IF (NY .LT, N) GO TO 106 79 IF (NY .LT, N) GO TO 106 79 IF (NY .LT, N) GO TO 106 79 (C) TO 106 79 (C) TO 106 70 (C) TO 106 70 (C) TO 106 71 IF (NY .LT, N) GO TO 106 72 (C) TO 106 73 IF (NY .LT, N) GO TO 106 74 IF (NY .LT, N) GO TO 106 75 (C) TO 106 76 (C) (NY) = 0. 77 GO TO 106 77 GO TO 106 78 103 GAMMA(NY) = PK 79 IF (NZ .NE.0) GO TO 106 79 IF (NY .LT, N) GO TO 106 79 IF (NY .LT, N) GO TO 106 70 (C) TO 106 71 GO TO 106 72 (C) 1 = 0. 73 IF (NY .LT, N) GO TO 106 74 IF (NY .LT, N) GO TO 106 75 IF (NUMBER .EQ. 1) GO TO 106 76 C(NY) = 0. 77 GO TO 106 77 GO TO 106 78 103 GAMMA(NY) = PK 79 IF (NZ .NE.0) GO TO 106 70 J = 1. 70 OT 106 70 J = 1. 70 OT 106 70 J = 1. 70 OT 106 71 IF (NY .LT .N) GO TO 106 72 IF (NY .LT .N) GO TO 106 73 IF (NY .LT .N) GO TO 106 74 IF (NY .LT .N) GO TO 106 75 IF (NY .LT .N) GO TO 106 76 C(1) = 0. 77 GO TO 106 77 GO TO 106 78 IO 0 106 IF (NY) = PK 79 IF (NY .LT .N) GO TO 106 79 IF (NY .LT .N) GO TO 106 79 IF (NY .LT .N) GO TO 106 79 IF (NY .LT) GO TO 100 70 IF (NY) IF (NY .LT) IF (NY] IF (NY .LT) IF (NY] IF (NY .LT] IF (NY] IF (</pre>	57		IF (DP) 108,999,109
<pre>59 108 IF (PK .LT .VALL) GO TO 3 60 TO 133 61 109 IF (PK .GT .VALL) GO TO 3 62 133 GO TO (131,101,102,103,104,105),NX 63 131 FRE0 = PK 64 GO TO 106 65 101 C(NY) = PK 66 IF (NZ .NE. 0) GO TO 106 67 134 IF (NY .LE, 0) GO TO 106 67 134 IF (NY .LE, 0) GO TO 106 67 134 IF (NY .LT, 2) GO TO 106 71 GO TO 106 72 102 Z(NY) = PK 73 IF (NZ .EQ. 1) GO TO 106 74 IF (NY .LT, 2) GO TO 106 75 IF (NUMBER .EQ. 1) GO TO 104 75 IF (NUMBER .EQ. 1) GO TO 105 76 (C(NY) = 0. 77 GO TO 106 77 GO TO 106 78 103 GAMMA(NY) = PK 79 IF (NZ .NE.0) GO TO 106 77 GO TO 106 78 103 GAMMA(NY) = PK 79 IF (NZ .NE.0) GO TO 106 77 GO TO 106 78 103 GAMMA(NY) = PK 79 IF (NZ .NE.0) GO TO 106 79 IF (NZ .NE.0) GO TO 106 70 134 75 IF (NUMBER .EQ. 1) GO TO 106 77 GO TO 106 78 103 GAMMA(NY) = PK 79 IF (NZ .NE.0) GO TO 106 79 IF (NZ .NE.0) GO TO 106 70 100 I = 0. 71 GO TO 106 73 IF (NZ .NE.0) GO TO 106 74 IF (NY .LT N) GO TO 134 75 IF (NUMBER .EQ. 1) GO TO 106 76 (C(NY) = 0. 77 GO TO 106 77 GO TO 106 78 103 GAMMA(NY) = PK 79 IF (NZ .NE.0) GO TO 106 79 GO TO 106 70 100 I = 1, N 70 C(I) = 0. 70 C(I) = 0. 71 GO TO 106 71 IF (NZ .NE.0) GO TO 106 72 (I) DO 100 I = 1, N 73 IF (NZ .NE.0) GO TO 106 74 IF (NY .LT N) GO TO 106 75 O IF (I.EQ.1) GO TO 40 75 CMPLETE PROFILE ** 75 DO 100 I = 1, N 75 IF (NUMPE 'ELEO ENSITIES TO 1.02 (SEA WATER). 75 IF ENDR=C(I-1) **2 75 IENDR=C(I-1) **</pre>	58	C** CH	ECK IF DESIRED LIMIT OF VARIABLE HAS BEEN REACHED.
<pre>60</pre>	59	108	IF (PK .LT. VALL) GD TO 3
61 109 IF (PK _GT, VALL) GG TO 3 62 133 GG TO (131,102,103,104,105),NX 63 131 FREQ = PK 64 GG TO 106 65 101 C(NY) = PK 66 IF (NZ _NE, 0) GG TO 106 71 34 GF (NY _EQ, N) GG TO 105 72 102 Z(NY) = PK 73 IF (NY _LT, 2) GG TO 106 74 IF (NY _LT, 2) GG TO 106 75 102 Z(NY) = PK 76 C(NY) = 0. 77 GG TO 106 78 103 GAMMA(NY) = PK 79 IF (NZ _EQ, 1) GG TO 106 71 GG TO 106 73 IG (NMBER _EQ, 1) GG TO 106 74 IF (NY _LT, N) GG TO 106 75 C(NY) = 0. 76 C(NY) = 0. 77 GG TO 106 78 103 GAMMA(NY) = PK 79 IF (NZ _NE, 0) GG TO 106 79 GG TO 106 79 GG TO 106 79 IF (NZ _NE, 0) GG TO 106 70 GG TO 106 71 GG TO 106 72 IO 107 IF (NZ _NE, 0) GG TO 106 73 IO 3 GAMMA(NY) = PK 74 IF (NZ _NE, 0) GG TO 106 75 IO 106 76 C(NY) = 0. 77 GG TO 106 77 GG TO 106 78 IO 3 GAMMA(NY) = PK 79 IF (NZ _NE, 0) GG TO 106 79 IF (NZ _NE, 0) GG TO 106 70 J I = 0. 71 IF (C) = 0. 72 IO 106 CONTINUE 74 IF (RHO(I).NE, 0.) GG TO 40 75 RHO(NY) = PK 76 TF (RHO(I).NE, 0.) GG TO 40 76 RHO(I)=1.02 77 TEMP=C(I(I-1)**2 77 TEMP=C(I(I-1)**2 77 TEMP=C(I(I-1)**2 77 TEMP=C(I(I-1)**2 77 TEMP=C(I(I-1)**2 77 TEMP=C(I(I-1)**2 77 TEMP=C(I(I-1)**2 77 TEMP=C(I(I-1)**2 77 TEMP=C(I(I-1)**2 70 TEMP=C(ICMMA(I-1))*(Z(I)-Z(I-1))-C(I-1) 70 TEMP=C(GAMMA(I-1))*(CANMA(I-1))*(Z(I)-Z(I-1))-C(I-1) 71 TEMP=C(GAMMA(I-1))*CO TO 70 71 TEMP=C(GAMMA(I-1))*CO TO 70 71 C(I) CO TO 80 72 C** IF VELOCITY AS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 70 C(I)=CO(I) 71 CS (I)=0. 71 CS (I)=CO TO 50 72 C** IF VELOCITY AS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 73 CI (I)=CO(I) TEMP=CO ID 50 74 C** IF VELOCITY AS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 74 C(I)=CO(I) NE.0.0 GO TO 70 75 CF (I)=CO(I) NE.0.0 GO TO 70 76 CF (I)=CO(I) NE.0.0 GO TO 70 76 CF (I)=CO(I) NE.0.0 GO TO 70 76 CF (I)=CONTINE TEMP = TEMP = CONPLEX VELOCITY 75 CF (I)=CONTINE TEMP = CONPLET C CON	60		GO TO 133
<pre>62 133 GD TO (131,101,102,103,104,105),NX 63 131 FREQ = PK 64 101 G(NY) = PK 65 101 G(NY) = PK 66 1F (NZ .NE. 0) GD TO 105 67 134 IF (NY .LT. 2) GD TO 105 67 134 IF (NY .LT. 2) GD TO 106 67 136 GAMMA(NY) = 0. 68 GAMAA(NY) = 0. 71 GG TO 106 72 102 Z(NY) = PK 73 IF (NZ .EQ. 1) GD TO 106 74 IF (NY .LT. N) GD TO 134 75 IF (NUMBER .EQ. 1) GD TO 106 77 GG TO 106 78 103 GAMMA(NY) = PK 79 IF (NZ .NE.0) GD TO 106 77 GG TO 106 78 103 GAMMA(NY) = PK 79 IF (NZ .NE.0) GD TO 106 71 GD TO 106 73 GD TO 106 74 GD TO 106 75 IF (NUMBER .EQ. 1) GD TO 106 76 (C(NY) = 0. 77 GG TO 106 77 GG TO 106 78 103 GAMMA(NY) = PK 79 IF (NZ .NE.0) GD TO 106 77 GD TO 106 78 100 GONTINUE 79 IF (NZ .NE.0) GD TO 106 79 IO 10 IO 107 71 GD TO 106 70 IO 10 IO 107 71 GD TO 106 72 IO 106 73 IC (II) = 0. 74 GD TO 106 75 HO(NY) = PK 79 IF (NZ .NE.0) GD TO 106 76 IO 10 IO IO 106 77 GD TO 106 78 100 IO 106 79 IF (NZ .NE.0) GD TO 106 79 IF (NZ .NE.0) GD TO 106 70 IO 10 IO IO</pre>	61	109	IF (PK .GT. VALL) GO TO 3
<pre>63 131 FREC = 'pk' 64 GO TO 106 65 101 C(NY) = Pk 66 IF (NZ .NE. 0) GO TO 106 67 134 IF (NY .E0. N) GO TO 105 67 134 IF (NY .L1. 2) GO TO 106 70 135 GAMMA(NY) = 0. 71 20 2 (NY) = PK 72 102 2 (NY) = PK 73 102 2 (NY) = PK 74 IF (NY .L1. N) GO TO 104 75 IF (NY .L1. N) GO TO 105 76 C(NY) = 0. 77 GO TO 106 77 GO TO 106 78 103 GAMMA(NY) = PK 79 IF (NZ .NE. 0) GO TO 106 78 103 GAMMA(NY) = PK 79 IF (NZ .NE. 0) GO TO 106 79 GO TO 106 79 GO TO 106 79 GO TO 106 79 IF (NZ .NE. 0) GO TO 106 79 GO TO 106 79 IF (NZ .NE. 0) GO TO 106 79 GO TO 106 79 GO TO 106 79 IF (NZ .NE. 0) GO TO 106 79 GO TO 106 79 GO TO 106 79 IF (NZ .NE. 0) GO TO 106 79 GO TO 106 79 GO TO 106 79 IF (NZ .NE. 0) GO TO 106 79 GO TO 106 79 GO TO 106 79 IF (NZ .NE. 0) GO TO 106 79 GO TO 106 79 GO TO 106 79 IF (NZ .NE. 0) GO TO 106 79 GO TO 106 79 GO TO 106 79 IF (NZ .NE. 0) GO TO 106 79 GO TO 106 79 GO TO 106 79 IF (NZ .NE. 0) GO TO 106 79 GO TO 106 79 IF (NZ .NE. 0) GO TO 106 79 GO TO 106 79 IF (NY .L1 .N. 0.) GO TO 106 79 GO TO 106 79 GO TO 106 70 IO 10 I -1,N 70 GO TO 106 70 IF (I.E0. 1) GO TO 50 71 GO TO 106 IF (I.E0. 1) GO TO 50 72 IF (RHO(I).NE. 0.) GO TO 50 73 TEMD=C(I(I-1)+*2 74 TEMD=C(ICMDR+TEMDF+TEMP)*C(I-1) 75 TEMD=C(ICMDR+TEMDF+TEMP)*C(I-1) 75 TEMD=C(ICMDR+TEMP+TEMP)*C(I-1) 75 TEMD=C(ICMDR+TEMP+TEMP)*C(I-1) 75 TEMD=C(ICMDR+TEMP+TEMP)*C(I-1) 75 CHI =(TEMDF+C(I-1)+*2 75 TEMD=C(ICMDR+TEMP+TEMP)*C(I-1) 75 CHI =(TEMDF+C(I-1)+*2 75 TEMD=C(ICMDR+TEMP+TEMP)*C(I-1) 75 CHI =(TEMDF+C(I-1)+*2 75 TEMDE (ICMDR+TEMP+TEMP)*C(I-1) 75 CHI =(TEMDF+C(I-1)+*2 75 TEMDE (ICMDR+TEMP+TEMP)/TEMDE (ICMDE (ICMDR+TEMP) 75 CHI =(TEMDF+C(I-1)+*2 75 TEMDE (ICMDR+TEMP)/</pre>	62	133	GD TO (131.101.102.103.104.105) NX
<pre>64</pre>	63	131	FREQ = PK
<pre>65 101 C(NY) = SK 66 IF (NZ .NE. 0) GO TO 106 67 134 IF (NY .EQ. N) GO TO 135 68 GAMMA(NY) = 0. 69 IF (NY .LT. 2) GO TO 106 71 00 TO 106 72 102 Z(NY) = PK 73 IF (NZ .EQ. 1) GO TO 106 74 IF (NY .LT. N) GO TO 134 75 IF (NUMBER .EQ. 1) GO TO 106 76 C(NY) = 0. 77 GO TO 106 78 103 GAMMA(NY) = PK 79 IF (NZ .NE.0) GO TO 106 80 J = NY + 1 81 DO 121 I = J,N 82 C(I) = 0. 83 121 CONTINUE 84 104 DPK(NY) = PK 85 GO TO 106 86 IS RHO(NY) = PK 87 106 CONTINUE 88 121 CONTINUE 88 121 CONTINUE 89 C** CCMPLETE PROFILE ** 90 DO 100 I=1,N 91 C ** SET UNSPECIFIED DENSITIES TO 1.02 (SEA WATER). 92 IF (RHO(I).NE.0.) GO TO 40 93 RHO(I)=1.02 94 40 IF (I.EQ.1) GO TO 50 95 C** COMPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER. 97 TEMDR=(I=N)+*2+CI(I=1)+*2 98 TEMDS=(TEMDR+TEMDR+TEMDP+TEMP)*CI(I=1) 99 TEMDS=(TEMDR+TEMDR+TEMP)*CI(I=1) 90 TEMDS=(TEMDR+TEMDR+TEMP)*CI(I=1) 91 TEMDS=(TEMDR+TEMDR+TEMP)*CI(I=1)) 92 TEMDS=(TEMDR+TEMDR+TEMP)*CI(I=1)) 93 TEMDS=(TEMDR+TEMDR+TEMP)*CI(I=1)) 94 C(I) I EMDS=(TEMDR+TEMDR+TEMP)*CI(I=1)) 95 C** COMPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER. 97 TEMDS=(TEMDR+TEMDR+TEMP)*CI(I=1)) 97 TEMDS=(TEMDR+TEMDR+TEMP)*CI(I=1)) 98 TEMDS=(TEMDR+TEMDR+TEMP)*CI(I=1)) 99 TEMDS=(TEMDR+TEMDR+TEMP)*CI(I=1)) 90 TEMDS=(TEMDR+TEMDR+TEMP)*CI(I=1)) 91 TEMDS=(TEMDR+TEMDR+TEMP)*CI(I=1)) 92 TEMT=(TEMDR+TEMDR+TEMDP+TEMP)*CI(I=1)) 93 TEMTS=(TEMDR+TEMDR+TEMDP+TEMP)*CI(I=1)) 94 C(I)=COMT(I=1)+COMT(I=N)+CI(I=1))/TEMDSN 95 C** COMPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER. 96 TEMTS=(TEMTS=1)+CAGR(I)+CAGN(I) 97 C* IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 97 C(I)=COMT(I)+CAGN(I)+CAGN(I)+CAGN(I) 98 OF IF (CI(I).NE.0) GO TO 70 99 CI(I)=COMT(I)+CAGN(I)+CAGN(I) CAYER, COMPUTE COMPLEX VELOCITY 99 C* KEEP ABSOLUTE C EQUAL TO GVEN PACE C FOMAL COMPLE COMPLEX VELOCITY 99 C* KEEP ABSOLUTE C EQUAL TO GVEN PACE C COMPLEX VELOCITY 90 CI(I)=COMTANTANTON IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 91 C* KEEP ABSOLUTE C EQUAL TO GVEN PACE C COMPLEX VELOCITY 93 C* KEEP</pre>	64		GD TD 106
<pre>13 IF (NZ .NE. 0) GO TO 106 134 IF (NY .EQ. N) GO TO 135 35 36 37 38 IF (NY .LT. 2) GO TO 106 39 IF (NY .LT. 2) GO TO 106 30 IF (NY .LT. 2) GO TO 106 31 GAMMA(NY) = 0. 32 IF (NY .LT. 2) GO TO 106 32 IO 2 Z(NY) = PK 33 IF (NZ .EQ. 1) GO TO 106 44 IF (NY .LT. N) GO TO 104 45 45 IF (NV.MER .EQ. 1) GO TO 134 45 45 IF (NV.MER .EQ. 1) GO TO 106 46 (NY = 0. 47 47 GO TO 106 47 48 IO GOMMA(NY) = PK 48 IO GO TO 106 48 IO TO 106 49 IF (NZ .NE.0) GO TO 106 40 J = NY + 1 41 40 DPR(NY) = PK 47 40 IF (NZ .NE.0) GO TO 106 48 IO TO 106 49 IF (NZ .NE.0) GO TO 106 40 J = NY + 1 41 41 41 OD 121 I = J,N 42 41 CONTINUE 44 40 DPR(NY) = PK 45 5 40 TO 106 46 5 60 TO 106 56 60 IO 50 RHO(NY) = PK 57 57 57 57 57 57 57 57 57 57 57 57 57</pre>	65	101	C(NY) = PK
<pre>67 134 IF (NY LEC, N) GO TO 135 68 GAMMA(NY) = 0. 135 GAMMA(NY-1) = 0. 71 135 GAMMA(NY-1) = 0. 72 132 Z(NY) = PK 73 14 IF (NY .LT. 2) GO TO 106 74 15 IF (NV.LT. N) GO TO 134 75 IF (NUMBER LE0. 1) GO TO 106 76 C(NY) = 0. 77 GO TO 106 78 103 GAMMA(NY) = PK 79 15 (NZ .NE.0) GO TO 106 80 J = NY + 1 81 10 D 121 I = J,N 82 C(I) = 0. 83 121 CONTINUE 84 104 DPK(NY) = PK 85 GO TO 106 80 C** COMPLETE PROFILE ** 90 DO 100 II = 1,N 91 C** SET UNSPECIFIED DENSITIES TO 1.02 (SEA WATER). 92 16 (I.E.) GO TO 50 95 C** COMPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER. 97 16 (TIMP-TEMP-TEMP-TEMP)*C(I-1) 17 EMDR-(I-1)**2 18 17 EMDR-(I-1)**2 18 18 18 19 10 C** SET UNSPECIFIED PRM II = 1,N 91 10 C** SET UNSPECIFIED DENSITIES TO 1.02 (SEA WATER). 92 10 IF (I.E0.1) GO TO 50 10 10 TEMP=(II)**2 11 EMDENTEMP-TEMP-TEMP)*CI(I-1) 11 EMDR=(TEMP+TEMP+TEMP)*CI(I-1) 12 13 C** SET UNSPECIFIED DENSITIES TO 1.02 (SEA WATER). 93 14 15 15 15 15 15 15 15 15 15 15 15 15 15</pre>	66		F(NZ NE, 0) GO TO 106
<pre>GAMMA(NY) = 0. GAMMA(NY) = 0. GO TO 105 GO TO 106 GO TO 106 GO TO 106 GO TO 106 F(NY) = PK GO TO 106 F(NY) = PK GO TO 106 GO TO 107 GO TO 106 GO TO 107 GO TO 106 GO TO 107 GO TO 106 GO TO 107 GO TO 106 GO TO 106 GO TO 106 GO TO 107 GO TO 106 GO TO 107</pre>	67	134	
<pre>Gram(1) = 0, Gr to 106 135 GAMMA(NY=1) = 0. 11 GO 106 72 102 Z(NY) = PK 137 IF (NZ .EQ. 1) GO TO 106 74 IF (NZ .EQ. 1) GO TO 134 75 IF (NUMBER EQ. 1) GO TO 106 76 C(NY) = 0. 77 GO TO 106 78 103 GAMMA(NY) = PK 79 IF (NZ .NE.0) GO TO 106 79 GO TO 106 79 GO TO 106 79 GO TO 110 G 70 O 121 I = J,N 70 GO TO 110 G 70 O 121 I = J,N 71 GO TO 106 70 O 121 I = J,N 72 C(I) = 0. 73 121 CONTINUE 74 IO 121 I = J,N 75 GO TO 106 75 GO TO 106 76 GO TO 106 77 106 CONTINUE 78 107 CONTINUE 79 IF (RPLOTE PROFILE ** 70 O 100 I=1,N 71 OC ** SET UNSPECIFIED DENSITIES TO 1.02 (SEA WATER). 71 F (RH0(I).NE.0.) GO TO 40 71 RH0(I)=1.02 72 FROM CIT (I = 0, I) GO TO 50 73 RH0(I)=1.02 74 40 IF (I = 0, I) GO TO 50 75 C** COMPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER. 75 TEMDE (I = 0, I) STORE TEMDE - TEMP)*CI(I=1) 76 TEMDE (I = 0, I) **2 77 TEMDE (I = 0, I) **2 78 TEMDE (I = 0, I) **2 79 TEMDE (I = 0, I) **2 70 TEMDE (I = 0, I) **2 71 TEMDE (I = 0, I) **2 72 TEMDE (I = 0, I) **2 73 TEMDE (I = 0, I) **2 74 TEMDE (I = 0, I) **2 75 C** COMPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER. 76 TEMDE (I = 0, I) **2 77 TEMDE (I = 0, I) **2 78 TEMDE (I = 0, I) **2 79 TEMDE (I = 0, I) **2 70 TEMDE (I = 0, I) **2 71 TEMDE (I = 0, I) **2 72 TEMDE (I = 0, I) **2 73 TEMDE (I = 0, I) **2 74 TEMDE (I = 0, I) **2 75 C** IF (CI) **2 US (I = 1) /*EMDEN 75 C** IF (CI) **2 US (I = 1) /**2 US (I = 1) /***2 US (I = 1) O US (I = 1) /***2 US (I</pre>	68		$G_{AMMA}(NY) = 0$
<pre>135 GAMMA(NY-1) = 0. 135 GAMMA(NY-1) = 0. 10 Z (NY) = PK 10 Z (NY) = PK 10 Z (NY) = PK 10 IF (NZ.EO. 1) GD TD 106 10 G TD 106 10 G TD 106 10 G TD 107 10 G TD 107 11 D 121 I = J,N 11 D 121 I = J,N 12 C(I) = 0. 13 GAMMA(NY) = PK 10 G CONTINUE 11 D 010 I = I,N 12 C(I) = 0. 13 GAMMA(NY) = PK 10 G CONTINUE 11 C COMPLETE PROFILE ** 10 G TD 106 10 G TD 106 10 G TO 107 10 G CONTINUE 10 C** SET UNSPECIFIED DENSITIES TD 1.02 (SEA WATER). 11 (RH0(I).NE.0.) GD TD 40 12 (F(I)) = 0. 13 GAMMA(I-1) + GAMMA(I-1))*(Z(I)-Z(I-1))-C(I-1) 14 (FMOR-T(I-1)**2 15 (FMOR-TEMP-TEMP-TEMP)*C(I(I-1)) 16 (CAMMA(I-1))+GAMMA(I-1))*(Z(I)-Z(I-1))-C(I-1)) 17 (FMOR-TEMP+TEMP-TEMP)*C(I-1)) 10 TEMP=(GAMMA(I-1)+GAMMA(I-1))*(Z(I)-Z(I-1))-C(I-1)) 10 TEMP=(GAMMA(I-1)+GAMMA(I-1))*(Z(I)-Z(I-1))-C(I-1)) 10 TEMI=(TEMD)*CI(I-1)-TEMDR*TEMP)/TEMDEN 16 (CI)=SQRT(.CS(TEMI+SQRT(TEMI*2+TEMI1**2))) 17 (C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 18 (CI)=CO(I)+CO(I) + CO(I) (CI)+CO(I) (CI)+CO(I)) 19 (CI)=SQRT(.CS(T(I)+CSRT(TEMI*2+TEMI1**2))) 10 (CI)=GO(I) 10 (CI)=CO(I) 10 (CI)=CO(I) (CI) (CI)+CO(I) (CI)+CO(I) (CI)+CO(I)) 10 (CI)=CO(I)) 10 (CI)=CO(I) (CI) (CI)+CO(I)+CO(I) (CI)+CO(I)+CO(I)) 10 (CI)=CO(I)) 11 (G) TO BO 12 (C** IF ATTENDATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 13 (C** KEP ABSOLUTE C FOUAL TO GUVE PFAL C FOR SIMPLICITY 13 (C** KEP ABSOLUTE C FOUAL TO GUVE PFAL C FOR SIMPLICITY 14 (C** KEP ABSOLUTE C FOUAL TO GUVE PFAL C FOR SIMPLICITY 15 (C** KEP ABSOLUTE C FOUAL TO GUVE PFAL C FOR SIMPLICITY 15 (C** KEP ABSOLUTE C FOUAL TO GUVE PFAL C FOR SIMPLICITY 15 (C** KEP ABSOLUTE C FOUAL TO GUVE PFAL C FOR SIMPLICITY 15 (C** KEP ABSOLUTE C FOUAL TO GUVE PFAL C FOR SIMPLICITY 15 (C** KEP ABSOLUTE C FOUAL TO GUVE PFAL C FOR SIMPLICITY 15 (C** KEP ABSOLUTE C FOUAL TO GUVE PFAL C FOR SIMPLICITY 15 (C** KEP ABSOLUTE C FOUAL TO GUVE PFAL C FOR SIMPLICITY 15 (C** KEP ABSOLUTE C FOUAL TO GUVE PFAL C</pre>	69		$G_{\text{Annual}}(N) = 0.$
<pre>11 GD GDATA(111) = 0. 12 102 Z(NY) = PK 13 IF (NZ .EQ. 1) GD TD 106 14 IF (NZ .HZ, N) GD TD 134 15 IF (NUMBER .EQ. 1) GD TD 106 16 C(NY) = 0. 17 GD TD 106 18 103 GAMMA(NY) = PK 19 IF (NZ .NE.0) GD TD 106 10 J = NY + 1 10 D 121 I = J,N 10 D 121 I = J,N 10 D 121 I = J,N 10 G CONTINUE 11 dD 10 I = 0. 13 121 CONTINUE 14 104 DPK(NY) = PK 106 CONTINUE 14 104 DPK(NY) = PK 107 106 CONTINUE 15 GD TD 106 16 CONTINUE 16 CONTINUE 17 (RHO(I).NE.0.) GD TD 1.02 (SEA WATER). 17 (RHO(I).NE.0.) GD TD 40 17 (RHOREC(I-1)**2 17 (RHOREC(I-1)**2 17 (RHOREC(I-1)**2 17 (RHOREC(I-1)**2 17 (RHOREC(I-1)**2 16 (CHORENTEMP*E2FCI(I-1) 10 TEMDR=(TEMDR+TEMP+TEMDR+TEMP)*CI(I-1) 10 TEMDR=(TEMDR+TEMP-TEMP)*CI(I-1) 10 TEMDR=(TEMDR+TEMP-TEMP)*CI(I-1) 10 TEMDR=(TEMDR+TEMP-TEMP)*CI(I-1) 10 TEMDR=(TEMDR+TEMP-TEMP)*CI(I-1) 10 TEMDR=(TEMDR+TEMP-TEMP)*CI(I-1) 10 TEMDR=(TEMDR+TEMP-TEMP)*CI(I-1) 10 TEMI (TEMDR+TEMP-TEMP)*CI(I-1) 10 TEMI (TEMDR+TEMP-TEMP)*CI(I-1) 10 TEMI (TEMDR+TEMP-TEMP)*CI(I-1) 10 TEMI (TEMDR+TEMP-TEMP)*CI(I-1) 10 TEMI (TEMI (CI(I)-1)-TEMDR*TEMP)/TEMDEN 10 (CI)=CON(I).NE.0.) GD TD 60 10 (CI)=CON(I).NE.0.) GD TO 70 11 GD TO B0 12 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 13 C** KEEP ABSOLUTE C FOULL TO GIVEN PFAL C FOUR SIMPLICITY 13 C** KEEP ABSOLUTE C FOULL TO GIVEN PFAL C FOUR SIMPLICITY 14 C** KEEP ABSOLUTE C FOULL TO GIVEN PFAL C FOUR SIMPLICITY 15 C** KEEP ABSOLUTE C FOULL TO GIVEN PFAL C FOUR SIMPLICITY 15 C** KEEP ABSOLUTE C FOULL TO GIVEN PFAL C FOUR SIMPLICITY 15 C** KEEP ABSOLUTE C FOULL TO GIVEN PFAL C FOUR SIMPLICITY 15 C** KEEP ABSOLUTE C FOULL TO GIVEN PFAL C FOUR SIMPLICITY 15 C** KEEP ABSOLUTE C FOULL TO GIVEN PFAL C FOUR SIMPLICITY 15 C** KEEP ABSOLUTE C FOULL TO GIVEN PFAL C FOUR SIMPLICITY 15 C** KEEP ABSOLUTE C FOULL TO GIVEN PFAL C FOUR SIMPLICITY 15 C** KEEP ABSOLUTE C FOULL TO GIVEN PFAL C FOUR SIMPLICITY 15 C** K</pre>	70	135	$(A \cap A) = 0$
<pre>102 Z(NY) = PK 112 Z(NY) = PK 115 IF (NZ .EQ. 1) GD TO 106 115 IF (NY .LT .N) GD TO 134 115 IF (NY .LT .N) GD TO 134 115 IF (NY .LT .N) GD TO 106 116 C(NY) = 0. 117 GO TO 106 118 IO3 GAMMA(NY) = PK 119 DO 121 I = J,N 11 DO 121 I = J,N 121 CONTINUE 131 DO 121 I = J,N 132 C(I) = 0. 133 C(I) = 0. 134 CONTINUE 144 104 DPK(NY) = PK 155 GO TO 106 156 CONTINUE 157 OF CONTINUE 158 OF CONTINUE 158 OF CONTINUE 159 C** CGMPLETE PROFILE ** 150 DO 100 I=1,N 150 C** SET UNSPECIFIED DENSITIES TO 1.02 (SEA WATER). 157 OF CONTINUE 158 OF CONTINUE 159 C** CGMPLETE PROFILE ** 150 DO 100 I=1,N 150 C** CGMPLETE PROFILE ** 150 DO 100 I=1,N 150 C** CGMPLETE PROFILE ** 150 C** CGMPLETE PROFILE ** 150 C** CGMPLETE PROFILE ** 150 C** CGMPLETE VELOCITY AT BOTTOM OF PREVIOUS LAYER. 150 TEMPECI(I-1)**2 150 TEMPECI(I-1)**2 150 TEMDE-(IEMDA-TEMPTEMP-TEMP)*CI(I-1) 151 TEMPECI(I-1)+*2 152 TEMDE-(IEMDA-TEMPTEMP-TEMP)/TEMDEN 153 TEMI=(TEMDA-CI(I))/TEMDEN 154 CB(I)=SORT(I)-1)-TEMDA*TEMP/TEMDEN 155 CI+ (CI)=SORT(I)-1)-TEMDA*TEMP/TEMDEN 156 CI]=SORT(I)-5*(TEMI+SQRT(TEMP*Z))/TEMDEN 157 CB(I)=TEMI+(CB(I)) 158 CI]=SORT(I)-5*(TEMI+SQRT(TEMP*Z))/TEMDEN 159 CI+ (I)=SORT(I)-1)-TEMDA*TEMD/TEMDEN 150 CI+ (I)=SORTEMI+CONCI(I)-1)/TEMDEN 151 CGI(I)=C+(I)+*CONCICI) 155 CI+ (I)=SORT(I)-1)-TEMDA*TEMP/TEMDEN 156 CI]=SORT(I)-5*(TEMI+SQRT(TEMI+22+TEMI1**2)) 157 CI= (I)=SORTEMI+CONCICI) 158 CI]=SORT(I)-1=TEMI-CI(I)-1] 159 CI= (I)=SORTEMI+CONCICI) CI= (I)=SORTEMI+CONCICI) 150 CI= (I)=SORTEMI+CONCICI) CI= (I)=SORTEMI+CONCICI) 150 CI= (I)=CONCICI) CI= (I)=SORTEMI+CONCICI) CI= (I)=SORTEMI+CONCICI) CI= (I)=SORTEMI+CI= (I)=SORTEMI+CI= (I)=SORTEMI+CI= (I)=COMPUTE COMPLEX VELOCITY 159 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 150 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 150 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 150 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 150 C** IF ATTENUATION IS TO</pre>	71	100	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	72	102	
<pre>11 (12.10, 1) GU 10 100 11 (12.10, 1) GU 10 134 15 IF (NUMBER .EQ. 1) GU TO 106 60 C(NY) = 0. 77 GO TO 106 78 103 GAMMA(NY) = PK 79 IF (NZ .NE.0) GO TO 106 80 J = NY + 1 81 DO 121 I = J,N 82 C(I) = 0. 83 121 CONTINUE 84 104 DPK(NY) = PK 85 GO TO 106 86 105 RHO(NY) = PK 87 106 CONTINUE 88 C** CCMPLETE PROFILE ** 90 DO 100 I=1.N 91 C** SET UNSPECIFIED DENSITIES TO 1.02 (SEA WATER). 92 IF (RHO(I).NE.0.) GO TO 40 89 RHO(I)=1.02 94 40 IF (I.EQ.1) GO TO 50 95 C** COMPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER. 97 TEMDR=C(I-1)**2 98 TEMDR=(IEMDR+TEMDR+TEMDR+TEMP)*CI(I=1) 99 TEMDR=(IEMDR+TEMDR+TEMP)*C(I=1) 90 TEMDR=(IEMDR+TEMDR+TEMP)/TEMDEN 91 C** IEMDR=(IEMDR+TEMDR+TEMP)/TEMDEN 93 TEMDR=(I=HDR+TEMDR+TEMP)/TEMDEN 94 CEITEMDI*(IEMDR+TEMP+TEMP)/TEMDEN 95 C** COMPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER. 96 TEMDE(I=1)**2 97 TEMDR=(I=TMDR+TEMDR+TEMP)*C(I=1) 98 TEMDI*(IEMDR+TEMDR+TEMP)/TEMDEN 99 TEMDR=(I=TEMDR+TEMDR+TEMP)/TEMDEN 90 TEM11=(-TEMDI*TEMP-TEMP)/TEMDEN 91 CB(I)=SQRT(.5*(TEM1+SQRT(TEM1**2+TEM1I**2))) 93 CB(I)=SQRT(.5*(TEM1+SQRT(TEM1**2+TEM1I**2))) 94 CG(I)=CTY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 95 C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 96 C(I)=CGR(I) 97 C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 97 C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 96 C(I)=CGR(I) 96 IF (DPK(I).NE.0.) GO TO 70 97 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 98 C** KEEP ABSOLUTE C EQUAL TO GIVEN PFAL C FOR SUMPLICITY 99 C** KEEP ABSOLUTE C EDUAL TO GIVEN PFAL C FOR SUMPLICITY</pre>	73	102	E(N) = FN E(N) = E(N)
<pre>17</pre>	74		
<pre>76 C(Y) = 0. 77 GO TO 106 78 103 GAMMA(NY) = PK 79 IF (NZ .NE.0) GO TO 106 77 GO TO 121 I = J,N 78 C(I) = 0. 78 11 DO 121 I = J,N 79 C(I) = 0. 70 C(I) = 0. 70 C(I) = 0. 71 C(I) = 0. 72 C(I) = 0. 73 C(I) = 0. 74 C(I) = 0. 75 C(I) = 0. 75 C(I) = 0. 75 C(I) = 0. 75 C(I) = 0. 76 C(I) = 0. 77 C(I) = 0. 78 C(I) = 0. 78 C(I) = 0. 79 C(I) = 0. 70 C(I) = 0. 70 C(I) = 0. 70 C(I) = 0. 71 C(I) = 0. 72 C(I) = 0. 73 C(I) = 0. 74 C(I) = 0. 75 C(I) = 0. 76 C(I) = 0. 77 C(I) = 0. 78 C(I) = 0. 78 C(I) = 0. 79 C(I) = 0. 70 C(I) = 0. 71 C(I) = 0. 72 C(I) = 0. 73 C(I) = 0. 74 C(I) = 0. 75 C(I) = 0. 75 C(I) = 0. 76 C(I) = 0. 77 C(I) = 0. 78 C(I) = 0. 78 C(I) = 0. 79 C(I) = 0. 70 C(I) = 0. 71 C(I) = 0. 72 C(I) = 0. 73 C(I) = 0. 74 C(I) = 0. 75 C(I) = 0. 75 C(I) = 0. 75 C(I) = 0. 76 C(I) = 0. 77 C(I) = 0. 78 C(I) = 0. 78 C(I) = 0. 79 C(I) = 0. 70 C(I) = 0. 70 C(I) = 0. 71 C(I) = 0.</pre>	75		$ \begin{array}{c} \text{If (NT LLI N) GUTU 134} \\ \text{If (NMDED E0 1) CO TO 106} \\ \end{array} $
<pre>C(NT) = 0. G TO 106 B 13 GAMMA(NY) = PK 14 C (NZ, NE.0) GO TO 106 J = NY + 1 DO 121 I = J,N C (I) = 6. 121 CONTINUE 12 C (I) = 6. 121 CONTINUE 12 C (I) = 6. 121 CONTINUE 12 C (I) = 6. 12 C (I) = 7. 12 C (I) = 7. 13 C (I) = 7. 14 C (I) = 7. 15 C (I) = 7. 16 C (I) = 7. 17 C (I) = 7. 18 C (I) = 7. 19 C (I) = 7. 10 C (I) = 7. 10 C (I) = 7. 10 C (I) = 7. 11 C (I) = 7. 12 C (I) = 7. 12 C (I) = 7. 13 C (I) = 7. 14 C (I) = 7. 15 C (I) = 7. 15 C (I) = 7. 16 C (I) = 7. 17 C (I) = 7. 18 C (I) = 7. 19 C (I) = 7. 10 C (I) = 7. 11 C (I) = 7. 12 C (I) = 7. 13 C (I) = 7. 14 C (I) = 7. 15 C (I) = 7. 15 C (I) = 7. 16 C (I) = 7. 17 C (I) = 7. 17 C (I) = 7. 18 C (I) = 7. 19 C (I) = 7. 19 C (I) = 7. 10 C (I) = 7. 11 C (I) = 7. 11 C (I) = 7. 12 C (I) = 7. 13 C (I) = 7. 14 C (I) = 7. 15 C (I) = 7. 15 C (I) = 7. 16 C (I) = 7. 17 C (I) = 7. 17 C (I) = 7. 18 C (I) = 7. 19 C (I) = 7. 19 C (I) = 7. 10 C (I)</pre>	76		I = (NOWDER : EQ. 1) GO IO 1000
<pre>78 103 GAMMA(NY) = PK 79 IF (NZ .NE.0) GO TD 106 79 J FY (NZ .NE.0) GO TD 106 79 J FY (NZ .NE.0) GO TD 106 70 J = NY + 1 70 D 121 I = J,N 70 D 121 I = J,N 71 DO 121 I = J,N 72 C(I) = 0. 73 J C(I) = 0. 74 J DO 121 I = J,N 75 G TD 106 75 G TD 106 75 G TD 106 76 J DO 100 I I,N 76 J DO 100 I I,N 77 J DO 100 I I,N 79 C** SET UNSPECIFIED DENSITIES TD 1.02 (SEA WATER). 70 J DO 100 I I,N 70 J C** SET UNSPECIFIED DENSITIES TD 1.02 (SEA WATER). 70 J C T SET UNSPECIFIED DENSITIES TD 1.02 (SEA WATER). 71 F (RH0(I).NE.0.) GO TD 40 75 C** COMPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER. 76 J TEMP=CI(I-1)**2 77 J TEMDR=C(I-1)**2 78 J TEMDR=C(I-1)**2 79 J TEMDR=C(I-1)**2 79 J TEMDR=CIEMDR+TEMDR+TEMDR+TEMP)*CI(I-1) 70 J TEMDR=CIEMDR+TEMDR+TEMDR*CI(I-1))*C(I-1) 71 J TEMDR=CIEMDR+TEMDR*CI(I-1))*CIEMDEN 72 J TEMI1=(TEMDR+TEMDR*CI(I-1))*CIEMDEN 73 J TEMI1=(TEMD1*CI(I-1)**2 74 J TEMI1=(TEMI1*CI(I-1)**2 75 J TEMI1=(TEMI1*CI(I-1))*CIEMDEN 75 J TEMI1=(TEMI1*CI(I-1)**2 75 J TEMI1=(TEMI1*CI(I-1))*CIEMDEN 76 J J T TEMI1=(TEMI1*CI(I-1))*CIEMDEN 76 J J C C T J J J J J J J J J J J J J J J</pre>	77		
<pre>79 IF (NZ.NE.0) GO TO 106 80 J = NY + 1 81 DO 121 I = J,N 82 C(I) = 0. 83 121 CONTINUE 84 104 DPK(NY) = PK 85 GO TO 106 86 105 RHO(NY) = PK 87 106 CONTINUE 88 89 C** CCMPLETE PROFILE ** 90 DO 100 I=1,N 91 C** SET UNSPECIFIED DENSITIES TO 1.02 (SEA WATER). 92 IF (RHO(I).NE.0.) GO TO 40 93 RHO(I)=1.02 94 40 IF (I.EQ.1) GO TO 50 95 C** COMPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER. 96 TEMP=C1(I=1)**2 97 TEMD=(CI=1)**2 98 TEMDI=(TEMDR+TEMDR+TEMDR+TEMP)*CI(I=1) 99 TEMDR=(TEMDR+TCHINC+TEMP)*CI(I=1) 100 TEMP=(GAMMA(I=1)+GAMMA(I=1))*(Z(I)-Z(I=1))-C(I=1) 111 TEMDENTEMP*2+CI(I=1)**2 122 TEMI=(TEMDR+CI=TEMP-TEMP)*CI(I=1)) 133 CB(I)=SQRT(.5*(TEM1+SQRT(TEM1*2+TEM1I*2))) 144 CB(I)=SQRT(.5*(TEM1+SQRT(TEM1*2+TEM1I*2))) 155 CC* IF (CI).NE.0.) GO TO 70 161 (I)=CA(I)=0. 175 CCI) 175 CCI] 175 CCI] 176 C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 176 CI]=0. 177 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 178 C** KEEP ABSOLUE C EDUAL TO GUVEN PEAL C FOR SIMPLICITY 178 C** KEEP ABSOLUE C EDUAL TO GUVEN PEAL C FOR SIMPLICITY 177 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 178 C** KEEP ABSOLUE C EDUAL TO GUVEN PEAL C FOR SIMPLICITY 179 C** KEEP ABSOLUE C EDUAL TO GUVEN PEAL C FOR SIMPLICITY 170 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 171 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 179 C** KEEP ABSOLUE C EDUAL TO GUVEN PEAL C FOR SIMPLICITY 170 C** KEEP ABSOLUE C EDUAL TO GUVEN PEAL C FOR SIMPLICITY 171 C** IF ATTENUATION IS TO BUT OF TO TO</pre>	79	102	
<pre>17</pre>	70	103	GAMMA(NT) = PK
00 0 = NI + 1 81 DD 121 I = J,N 82 C(I) = 0. 83 121 CONTINUE 84 104 DPK(NY) = PK 85 GD TO 106 86 105 RHO(NY) = PK 87 106 CONTINUE 88 C** COMPLETE PROFILE ** 90 D0 100 I=1,N 91 C** SET UNSPECIFIED DENSITIES TO 1.02 (SEA WATER). 92 IF (RHO(I).NE.0.) GO TO 40 93 RHO(I)=1.02 94 40 95 C** COMPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER. 96 TEMDR=C(I-1)**2 97 TEMDR=C(I-1)**2 98 TEMDI=(IEDRR+TEMDR+TEMDR+TEMP)*CI(I-1) 99 TEMDR=(GAMMA(I-1)+GAMMA(I-1))*C(I-1) 100 TEMDR=CIEND**CI(I-1)**2 101 TEMDEN=TEMP*2+CI(I-1)**2 102 TEMIT=(TEMD*TEMP-TEMD**CI(I-1)) 103 TEMIT=(TEMD**CI(I-1)**2 104 CB(I)=SQRT(.5*(TEMI+SQRT(TEMT**EMP)/TEMDEN 105 CBI(I)=TEMIT/(CB(I)+CB(I)) 106 JF (C(I).NE.0) GO TO 60 107 C** IF (CCI).NE.0) GO TO 70	80		
OD DO DO DO 82 C(I) = 6. 83 121 CONTINUE 84 104 DPK(NY) = PK 85 GO TO 106 86 105 RHO(NY) = PK 87 106 CONTINUE 88 0 D 100 101 = 1.0 89 C** COMPLET PROFILE ** D 00 100 I= 1.N 91 C** SET UNSPECIFIED DENSITIES TO 1.02 (SEA WATER). 16 (D) = 1.02 92 IF (RHO(I).NE.O.) GO TO 40 RHO(I)=1.02 93 RHO(I)=1.02 IF (I.EQ.1) GO TO 50 94 40 IF (I.EQ.1) GO TO 50 95 C** COMPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER. 96 TEMDE-C(I-1)**2 97 TEMDE-C(I-1)**2 98 TEMDE (TEMOR+TEMP-TEMP-TEMP)*C(I-1) 100 TEMP=(GAMMA(I-1)+GAMMA(I-1))*(Z(I)-Z(I-1))-C(I-1) 101 TEMDE(TEMDENTEMP-TEMP/TEMDEN 102 TEM1=(-TEMOI+TEMP-TEMP/TEMDP/TEMDEN 103 TEM1=(-TEMOI+TEMP-TEMP/TEMD/TEMDEN 104 CB(I)=SQR	81		U = NT + 1
<pre>62</pre>	01		DU 121 1 = 0, N
 121 CUNTINCE 121 CUNTINCE 104 DPK(NY) = PK 105 RHO(NY) = PK 106 CONTINUE 107 D0 100 I=1,N 108 C** CEMPLETE PROFILE ** 109 D0 100 I=1,N 118 C** SET UNSPECIFIED DENSITIES TO 1.02 (SEA WATER). 119 C** SET UNSPECIFIED DENSITIES TO 1.02 (SEA WATER). 111 C** SET UNSPECIFIED DENSITIES TO 1.02 (SEA WATER). 111 C** SET UNSPECIFIED DENSITIES TO 1.02 (SEA WATER). 111 C** SET UNSPECIFIED DENSITIES TO 1.02 (SEA WATER). 111 C** SET UNSPECIFIED DENSITIES TO 1.02 (SEA WATER). 111 C** COMPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER. 111 C** COMPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER. 111 C** CIT=100 C** CIT=10 C** C** CIT=10 C** C** CONTECT 111 C** C** C** C** C** C** C** C** C**	82	101	
04 DFA(NY) = PK 05 GG TO 106 86 105 RHO(NY) = PK 87 106 CONTINUE 88 DO 100 I=1,N 90 DO 100 I=1,N 91 C** SET UNSPECIFIED DENSITIES TO 1.02 (SEA WATER). 92 IF (RHO(I).NE.0.) GO TO 40 93 RHO(I)=1.02 94 40 95 C** 96 TEMP=CI(I=1)*2 97 TEMDR=C(I=1)*2 98 TEMDI=(TEMDR+TEMDR+TEMP)*CI(I=1) 99 TEMDR=(CAMMA(I=1))*(Z(I)=Z(I=1))-C(I=1) 100 TEMP=(GAMMA(I=1)+GAMMA(I=1))*(Z(I)=Z(I=1))-C(I=1) 101 TEMDEN=TEMP+TEMP-TEMP)*CI(I=1) 102 TEM1=(-TEMDI*CI(I=1)*2 103 TEM1=(-TEMDI*TEMP-TEMDR*CI(I=1))/TEMDEN 104 CB(I)=SQRT(.5*(TEM1+SQRT(TEM1*2+TEM11**2))) 105 CBI(I)=TEM1I/(CB(I)+CB(I)) 106 S0 IF (CI).NE.0.) GO TO 70 107 C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 108 C(I)=CB(I) 109 60 IF (CI).NE.0.) GO TO 70 101 GO TO 80	03	121	
30 1010100 66 105 RHO(NY) = PK 87 106 CONTINUE 89 C** CCMPLETE PROFILE ** 90 D0 100 I=1,N 91 C** SET UNSPECIFIED DENSITIES TO 1.02 (SEA WATER). 92 IF (RHO(I).NE.0.) GO TO 40 93 RHO(I)=1.02 94 40 95 C** 96 IEMPECI(I=1)**2 97 TEMDR=C(I-1)**2 98 TEMDR=(TEMDR+TEMDR+TEMP)*CI(I=1) 99 TEMDR=(CIMP-TEMP-TEMP)*CI(I=1) 99 TEMDR=(GAMMA(I=1)+GAMMA(I=1))*(Z(I)-Z(I=1))-C(I=1) 100 TEMP=(GAMMA(I=1)+GAMMA(I=1))*(Z(I)-Z(I=1))-C(I=1) 101 TEMDEN=TEMP*TEMP*TEMP/TEMP)/TEMDEN 102 TEMI=(TEMDI*CI(I=1)-TEMDR*TEMP)/TEMDEN 103 TEMI=(-TEMDI*CI(I=1))*2 104 CB(I)=SQRT(.5*(TEM1+SQRT(TEM1**2+TEM1I**2))) 105 CB(I)=TEMII/(CB(I)+CB(I)) 106 D IF (C(I).NE.0.) GO TO 60 107 C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 108 C(I)=CB(I) 109 60 IF (DFK(I).NE.0.) GO TO 70 110	95	104	DPK(NY) = PK
105 RHU(NY) = PK 87 106 CONTINUE 87 106 CONTINUE 89 C** COMPLETE PROFILE ** D0 100 I=1,N 90 D0 100 I=1,N 91 91 C** SET UNSPECIFIED DENSITIES TO 1.02 (SEA WATER). 92 IF (RHO(I).NE.0.) GO TO 40 93 RHO(I)=1.02 94 40 IF (I.EQ.1) GO TO 50 95 C** COMPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER. 96 TEMDR=CI(I-1)**2 97 TEMDR=CI(I-1)**2 98 TEMDR=(TEMDR+TEMDR+TEMDR-TEMP)*CI(I-1) 99 TEMDR=(GAMMA(I-1)+GAMMA(I-1))*(Z(I)-Z(I-1))-C(I-1) 100 TEMP=(GAMMA(I-1)+TEMDR+TEMP)/TEMDEN 101 TEMDE=TEMP**2+CI(I-1)**2 102 TEM1=(TEMDI*CI(I-1)-TEMDR*TEMP)/TEMDEN 103 TEM11=(-TEMDI*TEMP-TEMDR*CI(I-1))/TEMDEN 104 CB(I)=SQRT(.5*(TEM1+SQRT(TEM1**2+TEM1I**2))) 105 CBI(I)=TEM1I/(CB(I)+CB(I)) 106 50 IF (CI).NE.0.0) GO TO 60 107 C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 108 GO TO 80 119 <	05	105	
67 TOG CUNTINUE 88 C** CCMPLETE PROFILE ** 90 D0 100 I=1,N 91 C** SET UNSPECIFIED DENSITIES TO 1.02 (SEA WATER). 92 IF (RHO(I).NE.O.) GO TO 40 93 RHO(I)=1.02 94 40 95 C** 96 TEMP=CI(I-1)**2 97 TEMDR=CI(I-1)**2 98 TEMDR=(TEMDR+TEMDR+TEMDR+TEMP)*CI(I-1) 99 TEMDE(GAMMA(I-1)+GAMMA(I-1))*(Z(I)-Z(I-1))-C(I-1) 100 TEMP=(GAMMA(I-1)+TEMDR*TEMP)/TEMDEN 101 TEMDEN=TEMP**2+CI(I-1)**2 102 TEM11=(TEMDI*TEMP-TEMPTEMP)/TEMDEN 103 TEM11=(TEMDI*TEMP-TEMDR*CI(I-1))/TEMDEN 104 CB(I)=SQRT(.5*(TEM1+SQRT(TEM1**2+TEM1I**2))) 105 CBI(I)=TEM11/(CB(I)+CB(I)) 106 S0 IF (CI).NE.0) GO TO 60 107 C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 108 C(I)=CB(I) 109 60 107 C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 108 C1)=CB(I) 109 60 110	00	105	
C*** CCMPLETE PROFILE ** DO 100 I=1,N 91 C*** SET UNSPECIFIED DENSITIES TO 1.02 (SEA WATER). 92 IF (RHO(I).NE.O.) GO TO 40 RHO(I)=1.02 94 40 IF (I.EQ.1) GO TO 50 95 C** COMPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER. 96 TEMD=CI(I-1)**2 97 TEMDT=C(I-1)**2 98 TEMDT=(TEMDR+TEMDR+TEMDR-TEMP)*CI(I-1) 99 TEMDR=C(I-1)**2 90 TEMDR=CI(I-1)**2 91 TEMDR=C(I-1)**2 92 TEMDR=(TEMDR+TEMP-TEMP-TEMP)*C(I-1) 100 TEMP=(GAMMA(I-1)+GAMMA(I-1))*(Z(I)-Z(I-1))-C(I-1) 101 TEMP=*C2+CI(I-1)**2 102 TEM1=(TEMDI*CI(I-1)-TEMDR*TEMP)/TEMDEN 103 TEM1=(-TEMDI*EMP-TEMDR*CI(I-1))/TEMDEN 104 CB(I)=SQRT(.5*(TEM1+SQRT(TEM1**2+TEM1I**2))) 105 CI(I)=TEM1I/(CB(I)+CB(I)) 106 50 IF (C(I).NE.0.) GO TO 60 107 C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 108 C(I)=CB(I) 109 60 IF (DPK(I).NE.0.) GO TO 70 109 60 IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VE	07	106	CONTINUE
00 00 1=1,N 91 C** SET UNSPECIFIED DENSITIES TO 1.02 (SEA WATER). 92 IF (RHO(I).NE.O.) GO TO 40 93 RHO(I)=1.02 94 40 95 C** COMPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER. 96 TEMP=CI(I-1)**2 97 TEMDI=(TEMDR+TEMDR+TEMDR+TEMP)*CI(I-1) 98 TEMDI=(TEMDR+TEMDR+TEMDR+TEMP)*C(I-1) 99 TEMDR=(GAMMA(I-1)+GAMMA(I-1))*(Z(I)-Z(I-1))-C(I-1) 100 TEMP=(GAMMA(I-1)+GAMMA(I-1))*(Z(I)-Z(I-1))-C(I-1) 101 TEMDEN=TEMP**** 102 TEM1=(TEMDI*TEMD**TEMDR*TEMP)/TEMDEN 103 TEM1=(-TEMDI*TEMP-TEMDR*TEMP)/TEMDEN 104 CB(I)=SQRT(.5*(TEM1*SQRT(TEM1**2+TEM11**2))) 105 GI[I]=TEM1I/(CB(I)+CB(I)) 106 50 IF (C(I).NE.O) GO TO 60 107 C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 108 C(I)=CB(I) 00 109 60 IF (DPK(I).NE.O.) GO TO 70 110 CI(I)=0. 111 111 GO TO 80 112 112 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY<	80		
91 C** SET UNSPECIFIED DENSITIES TD 1.02 (SEA WATER). 92 IF (RHO(I).NE.O.) GO TD 40 93 RHO(I)=1.02 94 40 IF (I.EQ.1) GO TO 50 95 C** COMPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER. 96 TEMP=CI(I-1)**2 97 TEMDR=C(I-1)**2 98 TEMDR=(TEMDR+TEMDR+TEMDR-TEMP)*CI(I-1) 99 TEMDR=(TEMDR-TEMP-TEMP)*CI(I-1) 100 TEMP=(GAMMA(I-1)+GAMMA(I-1))*(Z(I)-Z(I-1))-C(I-1) 101 TEMDEN=TEMP**2+CI(I-1)**2 102 TEM1=(TEMDI*CI(I-1)-TEMDR*TEMP)/TEMDEN 103 TEM1=(-TEMDI*TEMP-TEMDR*TEMP)/TEMDEN 104 CB(I)=SQRT(.5*(TEM1+SQRT(TEM1**2+TEM1I**2))) 105 CBI(I)=TEM1I/(CB(I)+CB(I)) 106 S0 IF (C(I).NE.0) GO TO 60 107 C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 108 C(I)=CB(I) 109 60 107 C** IF (DPK(I).NE.0.) GO TO 70 110 CI)=CB(I) 109 60 111 GO TO 80 112 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY <	00	C++ CU	
92 IF (RHO(I).NE.O.) GO TO 40 93 RHO(I)=1.02 94 40 IF (I.EQ.1) GO TO 50 95 C** COMPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER. 96 TEMP=CI(I-1)**2 97 TEMDR=C(I-1)**2 98 TEMD=(TEMDR+TEMDR+TEMDR-TEMP)*CI(I-1) 99 TEMDE=(TEMDR+TEMP-TEMP-TEMP)*C(I-1) 100 TEMP=(GAMMA(I-1)+GAMMA(I-1))*(Z(I)-Z(I-1))-C(I-1) 101 TEMDE=(TEMDI*CI(I-1)**2 102 TEM1=(TEMDI*CI(I-1)-TEMDR*TEMP)/TEMDEN 103 TEM1=(-TEMDI*CI(I-1))-TEMDR*CI(I-1))/TEMDEN 104 CB(I)=SQRT(.5*(TEM1+SQRT(TEM1**2+TEM1I**2))) 105 CBI(I)=TEM1I/(CB(I)+CB(I)) 106 50 IF (C(I).NE.0) GO TO 60 107 C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 108 C(I)=CB(I) 109 60 IF (DPK(I).NE.0.) GO TO 70 110 GO TO 80 112 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 113 C** KEEP ABSOLUTE C EQUAL TO GIVEN REAL C FOR SIMPLICITY	01	C++ CC	
32IF (RHO(I):NE.U.) GU TU 4093RHO(I)=1.029440IF (I.EQ.1) GO TO 5095C**COMPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER.96TEMP=CI(I-1)**297TEMDR=((I-1)**298TEMDR=(TEMDR+TEMDR+TEMDR-TEMP)*CI(I-1)99TEMDR=(TEMDR-TEMP-TEMP)*C(I-1)100TEMP=(GAMMA(I-1)+GAMMA(I-1))*(Z(I)-Z(I-1))-C(I-1)101TEMDEN=TEMP*2+CI(I-1)+*2102TEM1=(TEMDI*CI(I-1)-TEMDR*TEMP)/TEMDEN103TEM11=(-TEMDI*TEMP-TEMDR*CI(I-1))/TEMDEN104CB(I)=SQRT(.5*(TEM1+SQRT(TEM1*2+TEM1I**2)))105CBI(I)=TEM1I/(CB(I)+CB(I))10650107C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER108C(I)=CB(I)10960110CD 0 80111GO TO 80112C** KEEP ABSOLUTE C EQUAL TO GIVEN REAL C FOR SIMPLICITY	92	CTT JE	TONSPECTIFIED DENSITIES TO 1.02 (SEA WATER).
94 40 IF (I.EQ.1) GO TO 50 95 C** COMPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER. 96 TEMP=CI(I-1)**2 97 TEMDR=C(I-1)**2 98 TEMDI=(TEMDR+TEMDR+TEMDR-TEMP)*CI(I-1) 99 TEMDE=(TEMDR-TEMP-TEMP)*C(I-1) 100 TEMP=(GAMMA(I-1)+GAMMA(I-1))*(Z(I)-Z(I-1))-C(I-1) 101 TEMDEN=TEMP*2+CI(I-1)**2 102 TEM1=(TEMDI*CI(I-1)-TEMDR*TEMP)/TEMDEN 103 TEM11=(-TEMDI*TEMP-TEMDR*CI(I-1))/TEMDEN 104 CB(I)=SQRT(.5*(TEM1+SQRT(TEM1**2+TEM1I**2))) 105 CBI(I)=TEM1I/(CB(I)+CB(I)) 106 50 IF (C(I).NE.0) GO TO 60 107 C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 108 C(I)=CB(I) 109 60 IF (DPK(I).NE.0.) GO TO 70 110 GO TO 80 112 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 113 C** KEEP ABSOLUTE C EQUAL TO GIVEN REAL C FOR SIMPLICITY	92		P((1) = 1, 20)
95 C** COMPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER. 96 TEMP=CI(I-1)**2 97 TEMDR=C(I-1)**2 98 TEMDI=(TEMDR+TEMDR+TEMDR-TEMP)*CI(I-1) 99 TEMDR=(TEMDR-TEMP-TEMP)*C(I-1) 100 TEMP=(GAMMA(I-1)+GAMMA(I-1))*(Z(I)-Z(I-1))-C(I-1) 101 TEMDEN=TEMP**2+CI(I-1)**2 102 TEM1=(TEMDI*TEMP-TEMDR*TEMP)/TEMDEN 103 TEM1=(-TEMDI*TEMP-TEMDR*CI(I-1))/TEMDEN 104 CB(I)=SQRT(.5*(TEM1+SQRT(TEM1**2+TEM1I**2))) 105 CBI(I)=TEM1I/(CB(I)+CB(I)) 106 50 IF (C(I).NE.0) GO TO 60 107 C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 108 C(I)=CB(I) 109 60 IF (DPK(I).NE.0.) GO TO 70 110 GO TO 80 111 GO TO 80 112 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 113 C** KEEP ABSOLUTE C EQUAL TO GIVEN REAL C FOR SIMPLICITY	94	40	
95C++COMPUTE VELOCITY AT BUTTOM OF PREVIOUS LAYER.96TEMD=CI(I-1)**297TEMDR=C(I-1)**298TEMDI=(TEMDR+TEMDR+TEMDR-TEMP)*CI(I-1)99TEMDR=(TEMDR-TEMP-TEMP)*C(I-1)100TEMP=(GAMMA(I-1)+GAMMA(I-1))*(Z(I)-Z(I-1))-C(I-1)101TEMDEN=TEMP**2+CI(I-1)**2102TEM1=(TEMDI*CI(I-1)-TEMDR*TEMP)/TEMDEN103TEM1=(-TEMDI*CI(I-1)-TEMDR*CI(I-1))/TEMDEN104CB(I)=SQRT(.5*(TEM1+SQRT(TEM1**2+TEM1I**2)))105CB(I)=TEM1I/(CB(I)+CB(I))10650IF (C(I).NE.0) GD TD 60107C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER108C(I)=CB(I)10960IF (DPK(I).NE.0.) GO TO 70110GO TO 80111GO TO 80112C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY113C** KEEP ABSOLUTE C EQUAL TO GIVEN REAL C FOR SIMPLICITY	95	40	
97 1 EMPECI(I-1)**2 97 TEMDR=C(I-1)**2 98 TEMDR=(TEMDR+TEMDR+TEMDR-TEMP)*CI(I-1) 99 TEMDR=(TEMDR-TEMP-TEMP)*CI(I-1) 100 TEMP=(GAMMA(I-1)+GAMMA(I-1))*(Z(I)-Z(I-1))-C(I-1) 101 TEMDEN=TEMP**2+CI(I-1)**2 102 TEM1=(TEMDI*CI(I-1)-TEMDR*TEMP)/TEMDEN 103 TEM1I=(-TEMDI*TEMP-TEMDR*CI(I-1))/TEMDEN 104 CB(I)=SQRT(.5*(TEM1+SQRT(TEM1**2+TEM1I**2))) 105 CBI(I)=TEM1I/(CB(I)+CB(I)) 106 50 107 C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 108 C(I)=CB(I) 109 60 107 C** IF (DPK(I).NE.0.) GO TO 70 110 CI(I)=0. 111 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 113 C** KEEP ABSOLUTE C EQUAL TO GIVEN REAL C FOR SIMPLICITY	96	UTT	TEMPOTE VELOCITY AT BUTTOM OF PREVIOUS LAYER.
98 TEMDR=C(I-I)**2 98 TEMDI=(TEMDR+TEMDR+TEMP-TEMP)*CI(I-1) 99 TEMDR=(TEMDR-TEMP-TEMP)*C(I-1) 100 TEMP=(GAMMA(I-1)+GAMMA(I-1))*(Z(I)-Z(I-1))-C(I-1) 101 TEMDEN=TEMP*2+CI(I-1)**2 102 TEM1=(TEMDI*CI(I-1)-TEMDR*TEMP)/TEMDEN 103 TEM1=(-TEMDI*TEMP-TEMDR*CI(I-1))/TEMDEN 104 CB(I)=SQRT(.5*(TEM1+SQRT(TEM1**2+TEM1I**2))) 105 CBI(I)=TEM1I/(CB(I)+CB(I)) 106 50 IF (CI).NE.0) GO TO 60 107 C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 108 C(I)=CB(I) 109 60 IF (DPK(I).NE.0.) GO TO 70 110 CI(I)=0. 111 GO TO 80 112 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 113 C** KEEP ABSOLUTE C EQUAL TO GIVEN REAL C FOR SIMPLICITY	97		
99 TEMDI=(TEMDR+TEMDR+TEMDR+TEMDR+TEMP)*CI(I-1) 99 TEMDR=(TEMDR=TEMP=TEMP)*C(I-1) 100 TEMP=(GAMMA(I-1)+GAMMA(I-1))*(Z(I)-Z(I-1))-C(I-1) 101 TEMDEN=TEMP*2+CI(I-1)*2 102 TEM1=(TEMDI*CI(I-1)-TEMDR*TEMP)/TEMDEN 103 TEM1=(TEMDI*CI(I-1)-TEMDR*TEMP)/TEMDEN 104 CB(I)=SQRT(.5*(TEM1+SQRT(TEM1**2+TEM1I**2))) 105 CBI(I)=TEM1I/(CB(I)+CB(I)) 106 50 IF (C(I).NE.0) GO TO 60 107 C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 108 C(I)=CB(I) 109 60 IF (DPK(I).NE.0.) GO TO 70 110 GO TO 80 112 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 113 C** KEEP ABSOLUTE C EQUAL TO GIVEN REAL C FOR SIMPLICITY	00		$I \in MDR = (1 - 1) * * 2$
$\begin{array}{rcl} 100 & TEMDR = (TEMDR = TEMP = TEMD = TEMP = TEMD $	90		
101TEMP=(GAMMA(1-1)+GAMMA(1-1))*(2(1)-2(1-1))-C(1-1))101TEMD=TEMP*2+CI(I-1)+*2102TEM1=(TEMDI*CI(I-1)-TEMDR*TEMP)/TEMDEN103TEM1=(-TEMDI*TEMP-TEMDR*CI(I-1))/TEMDEN104CB(I)=SQRT(.5*(TEM1+SQRT(TEM1**2+TEM1I**2)))105CBI(I)=TEM1I/(CB(I)+CB(I))10650IF (C(I).NE.0) GO TO 60107C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER108C(I)=CB(I)10960IF (DPK(I).NE.0.) GO TO 70110GO TO 80111GO TO 80112C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY113C** KEEP ABSOLUTE C EQUAL TO GIVEN REAL C FOR SIMPLICITY	100		TEMDR = (TEMDR + TEMP + TEMP + TEMP + E(T + 1))
101TEMDENETEMP*TETCI(I=1)**2102TEM1=(TEMDI*CI(I=1)-TEMDR*TEMP)/TEMDEN103TEM1=(-TEMDI*TEMP-TEMDR*CI(I=1))/TEMDEN104CB(I)=SQRT(.5*(TEM1+SQRT(TEM1**2+TEM1I**2)))105CBI(I)=TEM1I/(CB(I)+CB(I))10650IF (C(I).NE.0) GO TO 60107C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER108C(I)=CB(I)10960IF (DPK(I).NE.0.) GO TO 70110CI(I)=0.111GO TO 80112C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY113C** KEEP ABSOLUTE C EQUAL TO GIVEN REAL C FOR SIMPLICITY	101		TEMP = (GAMMAA(1-1)+GAMMAA(1-1))*(Z(1)-Z(1-1))-C(1-1)
102112 </td <td>102</td> <td></td> <td></td>	102		
103104CB(I)=SQRT(.5*(TEM1+SQRT(TEM1**2+TEM1I**2)))104CB(I)=SQRT(.5*(TEM1+SQRT(TEM1**2+TEM1I**2)))105CBI(I)=TEM1I/(CB(I)+CB(I))10650IF (C(I).NE.0) GO TO 60107C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER108C(I)=CB(I)10960IF (DPK(I).NE.0.) GO TO 70110CI(I)=0.111GO TO 80112C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY113C** KEEP ABSOLUTE C EQUAL TO GIVEN REAL C FOR SIMPLICITY	103		
105 CB(I)=JQRT(1.5*(TEMTT*Q+TEMTT*2+TEMTT*2))) 105 CBI(I)=TEM1I/(CB(I)+CB(I)) 106 50 IF (C(I).NE.0) GO TO 60 107 C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 108 C(I)=CB(I) 109 60 IF (DPK(I).NE.0.) GO TO 70 110 CI(I)=0. 111 GO TO BO 112 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 113 C** KEEP ABSOLUTE C EQUAL TO GIVEN REAL C FOR SIMPLICITY	104		
10650IF (C(I).NE.0) GO TO 60107C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER108C(I)=CB(I)10960IF (DPK(I).NE.0.) GO TO 70110CI(I)=0.111GO TO 80112C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY113C** KEEP ABSOLUTE C EQUAL TO GIVEN REAL C FOR SIMPLICITY	105		CPI(I) = Cont(I) = Cont(
107 C** IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER 108 C(I)=CB(I) 109 60 IF (DPK(I).NE.0.) GO TO 70 110 CI(I)=0. 111 GO TO 80 112 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 113 C** KEEP ABSOLUTE C EQUAL TO GIVEN REAL C FOR SIMPLICITY	106	50	
108 C(I)=CB(I) 109 60 IF (DPK(I).NE.0.) GD TO 70 110 CI(I)=0. 111 GO TO 80 112 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 113 C** KEEP ABSOLUTE C EQUAL TO GIVEN REAL C FOR SIMPLICITY	107		VELOCITY WAS INSECTED USE VELOCITY AT BOTTOM OF DEFUTORS AND
109 60 IF (DPK(I).NE.0.) GO TO 70 110 CI(I)=0. 111 GO TO 80 112 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 113 C** KEEP ABSOLUTE C EQUAL TO GIVEN REAL C FOR SIMPLICITY	108	Jun IL	C(I)-CR(I)
110 CI(I)=0. 111 GO TO 80 112 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 113 C** KEEP ABSOLUTE C EQUAL TO GIVEN REAL C FOR SIMPLICITY	109	60	
111 GO TO BO 112 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 113 C** KEEP ABSOLUTE C EQUAL TO GIVEN REAL C FOR SIMPLICITY	110		
112 C** IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY 113 C** KEEP ABSOLUTE C EQUAL TO GIVEN REAL C FOR SIMPLICITY	111		
113 C** KEEP ABSOLUTE C EQUAL TO GIVEN REAL C FOR SIMPLICITY	112	C** IF	ATTENIATION IS TO BE ADDITED TO A LAYED COMPLETE CONDUCT STORE
	113	C** KEF	EP ABSOLUTE & FOUAL TO GIVEN REAL & FOR SIMPLICITY

```
EMP=54576(.*FREQ

TEMDI=DPK(I)*C(I)

TEMDR=TEMP**2+TEMDI**2

CI(I)=TEMDI*TEMP*C(I)/TEMDR

C(I)=TEMP**2*C(I)/TEMDR

IF (GAMMA(I).NE.O.) GO TO 100

IF (I FON) GO TO 50
          70
                 TEMP=54576 .* FREQ
114
115
116
117
118
          80
119
                    IF (I.EQ.N) GO TO 90
          C** COMPUTE GRADIENT IF NOT GIVEN.
120
                    GAMMA(I)=(C(I+1)**2-C(I)**2)*C(I)/(2.*C(I+1)**2*(Z(I+1)-Z(I)))
121
122
                    IF (I.EQ.N) GO TO 90
123
                    GO TO 100
          C** REDUCE LAYERS BY ONE IF FINAL POINT ONLY DEFINES GRADIENT IN LAST LAYER.
124
125
          90
                    N=N-1
126
                    CONTINUE
127
          100
128
          C** COMPUTE USEFULL QUANTIES **
129
                  OMEGA=6.283185307 * FREQ
130
                  DO 120 I=1,N
131
                    TEMP=C(I)**2+CI(1)**2
132
                    CAY(I)=OMEGA*C(I)/TEMP
133
                    CAYI(I)=-OMEGA*CI(I)/TEMP
134
                    CAYSQ(I)=CAY(I)**2-CAYI(I)**2
135
                  CAYSQI(I)=2.*CAY(I)*CAYI(I)
136
                    TEMDR = -2. * GAMMA(I) * CAYSQ(I)
137
                  TEMDI = -2.*GAMMA(I)*CAYSQI(I)
                  TEMDI=-2.*GAMMA(I)*CAYSQ1(1)
GCU(I)=(TEMDR*C(I)+TEMDI*CI(I))/TEMP
GCUI(I)=(TEMDI*C(I)-TEMDR*CI(I))/TEMP
TEMP=EXP(ALOG(GCU(I)*2+GCUI(I)*2)/6.)
GI(I)=TEMP*SIN(ATAN2(GCUI(I),ABS(GCU(I)))/3.)
138
139
140
 141
142
                  G(I)=SQRT(TEMP**2-GI(I)**2)
 143
                     IF (GAMMA(I).LT.O.) GO TO 110
 144
                     G(I) = -G(I)
 145
           C++ XM IS A LAYER STRENGH PARAMETER USED ONLY TO COMPARE WITH OTHER MODE
                     GI(I) = -GI(I)
 146
 147
                     XMI = -GI(I) * (Z(I+1) - Z(I))

XM = -G(I) * (Z(I+1) - Z(I))
           148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
            Line Size = 100.
IF (K6.LT.3) PRINT 1320, V,VI,DET,DETI,A(21,4),Q(21,4)
C** ITERATE FOR MODE UP TO 7 STEPS.
DO 310 J=1,12
 163
 164
 165
                     DO 310 J=1,12
 166
                        V=V+DELTA
 167
                        VI=VI+DELTI
            C** DO NOT PERMIT IMAGINARY PART TO BECOME NEGATIVE.
 168
 169
                        IF (VI) 260,270,280
 170
```

```
171
           260
                      DELTI=DELTI-VI
172
           270
                  VI=1.E-18
173
           C** SET UP DETERMINANT FOR PHASE VELOCITY V + VI
174
           280
                       CALL SETUP
175
                       CALL DETNT (N, DET, DETI)
175
                       IF (K6.NE.1) GO TO 300
                  PRINT 1330, V, VI, DET, DETI, SLR, SLI
177
178
            300
                  TEMNR = DELTA
179
                  TEMNI = DELTI
                      TEMDI=VELI-DETI
180
181
                      TEMDEN=TEMDR*TEMDR+TEMDI*TEMDI
IF (TEMDEN.EQ.O.) GO TO 320
TEMRNU-TEMNR*TEMDR+TEMNI*TEMDI
TEMINU=TEMNR*TEMDR-TEMNR*TEMDI
TEMINU=(TEMDEN
182
183
184
185
                  SLR = TEMRNU / TEMDEN
SLI = TEMINU / TEMDEN
186
187
                  IF (J.GT. 3) GO TO 125

SR(4-NUMBER) = SLR

SI(4-NUMBER) = SLT
188
189
190
                  SI(4-NUMBER) = SLI
191
            125
                  DELTA = DET * SLR - DETI * SLI
192
                  DELTI = DET * SLI + DETI * SLR
193
                       SIZE=DELTA*DELTA+DELTI*DELTI
194
           C** DISCONTINUE ITERATION AFTER 2ND STEP IF CORRECTION STEP IS MORE THAN
195
           C** PREVIOUS STEP.
190
                      IF ((SIZE.GT.SIZE2).AND.(J.GT.2)) GO TO 320
197
                      SIZE2=SIZE*2.
198
                      VEL=DET
199
                      VELI=DETI
200
          310
                      CONTINUE
201
           320
                   CONTINUE
                 CONTINUE
PV(4-NUMBER) = V
PVI(4-NUMBER)= VI
NUMBER = NUMBER + 1
GO TO 107
202
           51
203
204
205
                  GO TO 107
          C** START STANDARD STEP, EXTRAPOLATE PHASE VELOCITY AND SLOPE.
206
207
           111 INCA = DP
208
                  INCB = DP
209
                  INCC = DP
210
                 INCD = -INCB - INCC
            122
211
                 T(1) = INCB * INCD
212
                 T(2) = INCB * INCC
213
                 T(3) = INCD * INCC
                W(IS+4) = -SR(IS) / T(IS)

WI(IS + 4) = -SI(IS) / T(IS)

W(IS) = -PV(IS) / T(IS)

WI(IS) = -PVI(IS) / T(IS)

WI(IS) = INCA + INCP
214
215
216
217
218
           112
                 INCD = INCA + INCB
INCE = INCD + INCC
219
           113
220
221
                 T(1) = INCD * INCE
222
                 T(2) = INCA * INCE
223
                 T(3) = INCA * INCD
                 SLOP = 0.
224
225
                 SLOPI = 0.
226
                 SUM = 0.
227
                 SUMI = 0.
```

```
DO 114 IS = 1,3
228
                SLOP = SLOP + W(IS + 4) * T(IS)
SLOPI = SLOPI + WI(IS+4) * T(IS)
229
230
                 SUM = SUM + W(IS) * T(IS)
231
           114 SUMI = SUMI + WI(IS) * T(IS)
232
                 V = SUM
233
                 VI = SUMI
234
                 CALL SETUP
235
                 CALL DETNT (N, DET, DETI)
236
          C** EVALUATE DETERMINANT AT THE EXTRAPOLATED POINT.
237
                 VEL = DET
238
                 VELI = DETI
239
          C** ITERATE FOR THE ROOT USING EXTRAPOLATED SLOPE.
240
                 DELTA = DET * SLOP - DETI * SLOPI
241
                 DELTI = DET * SLOPI + DETI * SLOP
242
                 IF (K1 .EQ. 1) PRINT 1330, V, VI, DET, DETI, DELTA, DELTI
243
                 V = V + DELTA
244
                 VI = VI + DELTI
245
                 IF (VI .GE. 0.) GO TO 124
246
                 DELTI = DELTI - VI
247
                 CHNGI = CHNGI - VI
248
                 VI = 0.
249
          C** RE-EVALUATE AT NEW POINT.
250
           124 CALL SETUP
251
                 CALL DETNT (N, DET, DETI)
252
                 TEMNR = DELTA
253
                 TEMNI = DELTI
254
                      TEMDR=VEL-DET
 255
                      TEMDI=VELI-DETI
 256
                       TEMDEN=TEMDR * TEMDR+TEMDI * TEMDI
 257
                 IF (TEMDEN .EQ. 0.) GO TO 123
 258
                      TEMRNU=TEMNR*TEMDR+TEMNI*TEMDI
 253
                      TEMINU=TEMNI*TEMDR-TEMNR*TEMDI
 260
          C** EVALUATE SLOPE (RECIPROCAL ACTUALLY USED).
 261
                 SLR = TEMRNU / TEMDEN
 262
                 SLI = TEMINU / TEMDEN
DELTA = DET * SLR - DETI * SLI
 263
 264
                  DELTI = DET * SLI + DETI * SLR
           IF (K1 .EQ. 1) PRINT 1330, V, VI, DET, DETI, DELTA, DELTI
C** CORRECT PHASE VELOCITY TO BEST VALUE.
 265
 266
 267
                  V = V + DELTA
 268
                  VI = VI + DELTI
 269
                  TEMP = V**2 / (TEMNR**2 + TEMNI**2)
           C** WAS INCREMENT LARGE ENOUGH TO PERMIT EVALUATION OF SLOPE.
 270
 271
                  IF (TEMP .LT. RLIM) GO TO 123
IF (TEMP .LT. 1.E34) GO TO 141
 272
 273
                  SLR = SLOP
 274
           C** IF NOT, USE EXTRAPOLATED SLOPE.
 275
                  SLI = SLOPI
 276
                  GO TO 141
 277
            123 CONTINUE
 278
           C** IF SO, FIND 1 - RATIO OF SLOPES.
 279
                  \mathsf{TEMDEN} = (\mathsf{SIR}**2 + \mathsf{SLI}**2)
                  TEMDR = SLR * SLOP + SLI * SLOPI - TEMDEN
  280
  281
                  TEMDI = SLR * SLOPI - SLI * SLOP
  282
                  TEMP = (TEMDR**2 + TEMDI**2) / TEMDEN**2
  283
                  IF (TEMP .GT. TLIM) GO TO 116
  284
```

```
C** SLOPE RATIO TOO GOOD. DOUBLE STEP.
 285
 286
            141 DP = DP * RATIO
 287
                  GO TO 117
 288
            116
                 IF (TEMP .LT. BLIM) GO TO 117
                  PRINT 130, PK, V, VI, DET, DETI, SLR, SLI, TEMP, DBLOSS, NUMBER
 289
 290
            130 FORMAT (1X,E14.6,E16.9,E13.7,6E10.3,I5)
           C** SLOPE RATIO TOO POOR. HALVE STEP.
 291
 292
                  IF (NUMBER .LT. 7) GO TO 126
 293
                 PK = PK - DP
DP = DP / RATIO
 294
 295
                  INCA = DP
 296
                  JX = JX + 1
 297
                  IF (K2 .EQ. 1) PRINT 118, PK, V, VI, DET, DETI
 298
           C** STOP ON 5 SUCCESSIVE FAILURES. MODE IS LOST.
 299
                 IF (JX .LT. 5) GO TO 107
 300
                  PRINT 810, N, FREQ
                 FORMAT (I4, G12.5)
DO 801 I = 1,N
 301
            810
 302
            3
 303
                  PRINT 800, C(I), Z(I), GAMMA(I), DPK(I), RHD(I), G(I)
 304
            800
                 FORMAT (10G12.5)
 305
            801
                 CONTINUE
 306
                 GO TO 4
                 PRINT 127 , N, TEMP
FORMAT (7H NUMBER, I3, 22H FAILED, SLOPE RATIO ,F10.6)
 307
            126
308
            127
 309
          C** UPDATE ALL QUANTITIES FOR NEXT STEP.
310
            117 INCC = INCB
311
                 INCB = INCA
312
                 INCA = DP
313
                 PV(3) = PV(2)
314
                 PVI(3) = PVI(2)
315
                 PV(2) = PV(1)
                 PVI(2) = PVI(1)
316
317
                 PV(1) = V
318
                 PVI(1) - VI
319
                 JX = 0
320
                 DENOM = V * V + VI * VI
321
                 LAMBDI = -OMEGA * VI / DENOM
322
                 DB LOSS = -8686. * LAMBDI
323
                 SR(3) = SR(2)
324
                 SR(2) = SR(1)
325
                 SR(1) = SLR
326
                 SI(3) = SI(2)
327
                 SI(2) = SI(1)
328
                 SI(1) = SLI
329
                GV = V**2 / (V - FREQ * (V-PV(2)) / INCB)
PRINT 118, PK,V,VI,DET,DETI,SLR,SLI,TEMP,DBLOSS,GV,NUMBER
330
331
           118 FORMAT (E15.7,E16.9,E13.7,6E10.3,F11.5,I5)
332
                 NUMBER = NUMBER + 1
333
          C** CHECK TOTAL NUMBER OF STEPS.
334
                 IF (NUMBER .GT. KO) GO TO 3
335
                 GO TO 107
336
           999
                 STOP
337
          1250
                 FORMAT (13,8H LAYERS,,F10.1,3H HZ)
338
                FORMAT(SE10.4)
          1260
339
                FORMAT (8H ATTEN =,G10.5,5HDB/KM)
FORMAT (8F14.5)
          1270
340
          1280
341
          1320
                     FORMAT (/,6E18.9)
```

342	1330 FORMAT (6E18.9)
343	1240 FORMAT(12,E10.1, E10.2)
344	1290 FORMAT (7X,6H RE M, 8X,6H IM M, 8X,6H L/KD, 8X,6H RE C, 8X,6H IM C
345	1 ,5X,12H RE C BOTTOM,4X,12H IM C BOTTOM)
346	1200 CONTINUE
347	END

INITIAL DISTRIBUTION

ASST. SECRETARY OF THE NAVY (R&ES)

OFFICE OF NAVAL RESEARCH ONR-102-OS ONR-480 ONR-485

CHIEF OF NAVAL OPERATIONS NOP-095 NOP-951E

CHIEF OF NAVAL MATERIAL NMAT-08T2 ASW-122

NAVAL RESEARCH LABORATORY CODE 8100 CODE 8120

NAVAL OCEAN RESEARCH & DEVELOPMENT ACTIVITY CODE 320 CODE 460 CODE 500 CODE 520 CODE 600 CODE 200

NAVAL OCEANOGRAPHY COMMAND

NAVAL OCEANOGRAPHIC OFFICE CODE 3440

NAVAL ELECTRONIC SYSTEMS COMMAND PME-124 NELEX-320

- NAVAL SEA SYSTEMS COMMAND NSEA-003 NSEA-63R NSEA-63R-23 NSEA-63D PMS-407
- NAVAL AIR SYSTEMS COMMAND NAIR-370

NAVAL AIR DEVELOPMENT CENTER

NAVAL COASTAL SYSTEMS CENTER

NAVAL INTELLIGENCE SUPPORT CENTER

NAVAL POSTGRADUATE SCHOOL

NEW LONDON LABORATORY NAVAL UNDER WATER SYSTEMS CENTER

NAVAL UNDERWATER SYSTEMS CENTER

WHITE OAK LABORATORY NAVAL SURFACE WEAPONS CENTER

D. W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

FLEET NUMERICAL WEATHER CENTRAL

WOODS HOLE OCEANOGRAPHY INSTITUTION WOODS HOLE, MA 02543

MARINE PHYSICAL LABORATORY UNIVERSITY OF CALIFORNIA, SAN DIEGO BLDG. 106 SAN DIEGO, CA 92152

APPLIED RESEARCH LABORATORY THE PENNSYLVANIA STATE UNIVERSITY P.O. BOX 30 STATE COLLEGE, PA 16801

THE UNIVERSITY OF TEXAS APPLIED RESEARCH LABORATORY P.O. BOX 8029 AUSTIN, TX 78712

APPLIED PHYSICS LABORATORY UNIVERSITY OF WASHINGTON 1013 N.E. 40TH ST. SEATTLE, WA 98195

NATIONAL RESEARCH COUNCIL ATTN: COMMITTEE UNDERSEA WARFARE 2101 CONSTITUTION AVE., NW WASHINGTON, DC 20418

DEFENSE DOCUMENTATION CENTER

(12)