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Abstract: The depth separated wave equation in underwater acoustics is
a non-self-adjoint Sturm-Liouville eigenvalue problem with complex and dis-
continuous coefficients. A Galerkin approach, based on a simple real problem
with appropriate derivative discontinuities, leads to a complex symmetric gen-
eralized matrix eigenvalue problem. The eigenvector solutions are found to
satisfy a weighted biorthogonality condition that is desirable for coupled mode
applications in laterally varying ocean waveguides. Other advantages are also
discussed.

Introduction:
The depth separated wave equation, for the harmonic acoustic pressure, has

the form of a Sturm-Liouville problem1 given by
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where λ is a separation constant whose values are determined by the coefficients
in the differential equation and the boundary conditions at the ends of the
interval 0 ≤ z ≤ H. The boundary conditions used are φ(0) = 0 and φ(H) = 0.
The boundary conditions correspond to a free (pressure release) surface at z = 0
and H. The function ρ is the density and k = (ω/c)[1 + i(α/40π log10 e)] is the
complex wave number, where ω is the circular frequency, c is the sound speed
and α is the attenuation in dB per wavelength. The functions ρ and k2 can
be discontinuous at the bottom of the water column, at the interface z = h
where h < H. The continuity of pressure and particle velocity dictate that
φ(h−) = φ(h+) and
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where the superscripts – and + indicate limits from above and below, respec-
tively. The Sturm-Liouville eigenvalue problem consisting of Eq. (1) and asso-
ciated boundary and interface conditions is non-self-adjoint because the wave
number squared is complex. The eigenvalues and eigenfunctions are generally
complex. It is assumed that the attenuation is small enough so that the eigen-
values are simple roots of the characteristic equation.

The Galerkin Method:
The challenge of finding the complex eigenvalues and eigenfunctions will

be met by using the Galerkin method2. The Galerkin method replaces the
differential eigenvalue problem in Eq. (1) with a matrix eigenvlaue problem.
The matrix eigenvlaue problem is obtained by projecting Eq. (1) onto a finite
dimensional subspace spanned by a set of known basis functions.

Suppose that the complex wave number squared and density, in Eq. (1), are
defined in the water and bottom, separately, using

c(z) =
{

cw(z), 0 ≤ z ≤ h
cb(z), h < z ≤ H

, α(z) =
{

αw(z), 0 ≤ z ≤ h
αb(z), h < z ≤ H

,
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and

ρ(z) =
{

ρw(z), 0 ≤ z ≤ h
ρb(z), h < z ≤ H

.

An example of a sound speed and density profile is shown, to the right of the
depth axis, in Fig. 1. A simple problem, with no attenuation, will be constructed
using a piecewise constant sound speed and density profile defined by

c0(z) =
{

cw, 0 ≤ z ≤ h
cb, h < z ≤ H

and ρ0(z) =
{

ρw, 0 ≤ z ≤ h
ρb, h < z ≤ H

as shown on the left side of the depth axis, in Fig. 1.
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Figure 1. Sound speed and density profiles for the application of the Galerkin
method.

The source of the basis functions, used in the Galerkin method, is the set of
real eigenfunctions of the Strum-Liouville problem given by
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where the coefficients are defined using the piecewise constant profiles already
introduced and the wave number k0 = ω/c0 is real. The boundary conditions
and interface conditions associated with Eq. (3) are taken to be the same
as the boundary conditions and interface conditions associated with Eq. (1)
to facilitate the convergence of the Galerkin expansion. In particular, it is
important that the real eigenfunctions have the same derivative discontinuity
as specified in Eq. (2), to avoid Gibbs oscillations3. Consequently, we will take
ρw = ρw(h−) and ρb = ρb(h+). The choices of cw and cb are not as important,
but we suggest cw = avg{cw(z), 0 ≤ z ≤ h} and cb = avg{cb(z), h ≤ z ≤ H},
for general applications. The same set of basis functions was used by Evans and
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Gilbert4 to solve Eq. (1) when only the sound speed profile varied continuously,
in two layers.

The Sturm-Liouville eigenvalue problem consisting of Eq. (3) and the as-
sociated boundary and interface conditions is self-adjoint. The eigenvalues γm

are simple roots of the characteristic equation that can be found by searching
along the real axis. The real eigenfunctions ψm are orthogonal5 and can be
normalized such that

H∫

0

ψn(z)ψm(z)
ρ0(z)

dz = δn,m (4)

where δn,n = 1 and δn,m = 0 if n 6= m. Since the coefficients in Eq. (3)
are piecewise constant, the eigenfunctions ψm are sine waves, in the water and
bottom layers. The arguments of the sine waves are determined, in each layer,
by the eigenvalues γm. The integrals, required to effect the normalization in Eq.
(4), can be computed, analytically, in closed form. Equation (4) is the weighted
orthogonality condition for the real eigenfunctions.

An eigenfunction of Eq. (1) is approximated by the truncated expansion
φ =

∑M
m=1 umψm where M is chosen to obtain an adequate range of modal

angles, in the eigenfunction solutions of Eq. (1). A rule of thumb6 is to make M
twice as large as the total of the number of propagating and bottom interacting
modes needed to represent the acoustic pressure. Substituting the truncated
expansion into Eq. (1), requiring that the residual error be orthogonal to each
of the ψm,m = 1,M , and applying integration by parts yields

M∑
m=1

An,mum = λ

M∑
m=1

Bn,mum (5)

where
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0

1
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dz

and

Bn,m =

H∫

0

ψn(z)ψm(z)
ρ(z)

dz.

When k2 is linear and ρ is exponential or constant, in multiple layers, the above
integrals can be computed in closed form. Note that the real eigenfunctions are
not orthogonal when weighted by 1/ρ. Other advantages are also discussed.

A Matrix Eigenvalue Problem:
Suppose A is the MxM matrix whose entries are An,m and B is the MxM

matrix whose entries are Bn,m. If the column vector ~u is defined by ~u =
col(um,m = 1,M), then Eq. (5) can be written as

A~u = λB~u (6)
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where A is a complex symmetric (not Hermitian) matrix and B is a real sym-
metric matrix. Equation (6) is called a generalized matrix eigenvalue problem
because B is not, necessarily, the identity matrix. The eigenvalues of Eq. (6)
approximate the eigenvalues of Eq. (1). The eigenvectors of Eq. (6) provide
the expansion coefficients for approximates of the eigenfunctions of Eq. (1).

Equation (6) can be turned into a standard matrix eigenvalue problem by
multiplying on the left by B−1, but this destroys the symmetry of the problem.
If B is positive definite, then Eq. (6) can be replaced by the complex symmetric
eigenvalue problem

C ~w = λ~w (7)

where C = L−1A(LT )−1, ~w = LT ~u, and B = LLT is the Cholesky decomposi-
tion of B. The superscript T stands for transpose and L is a lower triangular
matrix, making the calculation of C relatively easy7. Note that ~uT is a row vec-
tor and its product with the column vector ~v = col(vj , j = 1,M) is the scalar
~uT~v =

∑M
j=1 ujvj .

To see that B is positive definite, let ~x = col(xj , j = 1, M) be a real vector
and define the function f =

∑M
j=1 xjψj . It follows that

H∫

0

f2(z)
ρ(z)

dz = ~xT B~x .

Consequently, ~xT B~x > 0 unless ~x = ~0.
We will assume that the complex symmetric matrix C in Eq. (7) is diagonal-

izable8. In this case, C = WΛWT where Λ = diag(λm,m = 1,M) and W is
an orthogonal matrix (not unitary) such that WT W = I is the MxM identity
matrix. The columns of W = row(~wm, m = 1,M) are the eigenvectors of C.
The orthogonality of W implies that ~wT

n ~wm = δn,m. The eigenvectors of Eq.
(6) are recovered by solving LT ~um = ~wm and consequently ~uT

nB~um = δn,m.
The complex symmetric matrix eigenvalue problem in Eq. (7) can be tackled

by several methods. The Jacobi technique, due to Anderson and Loizou9, is
recommended here. The Jacobi technique is not the most efficient, but it is
simple and foolproof, assuming that C is diagonalizable. The foolproof feature
is important in a generally applicable numerical code.

Biorthogonality:
When the stepwise coupled mode procedure10 is applied to a laterally varying

ocean waveguide it is necessary to expand the complex pressure p =
∑M

m=1 pmφm

in terms of the complex eigenfunctions of Eq. (1). The weighted biorthogonality
property of the complex eigenfunctions, given by

H∫

0

φn(z)φm(z)
ρ(z)

dz = δn,m , (8)
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is needed to justify the projection

pm =

H∫

0

p(z)φm(z)
ρ(z)

dz

used in the stepwise coupled mode procedure. Although Eq. (8) is directly
analogous to the orthogonality condition in Eq. (4), the term biorthogonality
is used because of the non-self-adjoint nature11 of Eq. (1). In short, it means
that the complex conjugate that would normally appear on one of the complex
functions in the integrand is omitted. This conforms to the definition of the
scalar product of two complex vectors, already introduced. The biorthogonality
of the Galerkin approximates of the complex eigenfunctions is demonstrated as
follows.

Consider the two approximate eigenfunctions of Eq. (1) given by φm =∑M
j=1 um,jψj and φn =

∑M
j=1 un,jψj . The integral in Eq. (8) can be evaluated

by substitution of these two expansions to obtain

H∫

0

φn(z)φm(z)
ρ(z)

dz = ~uT
nB~um .

The biorthogonality of the approximate eigenfunctions follows because ~uT
nB~um =

δn,m.
Conclusions:
The Galerkin method provides a relatively simple procedure for solving the

non-self-adjoint Sturm-Liouville problem in Eq. (1). The solutions are useful
when the stepwise coupled mode procedure is applied to a range dependent
acoustic waveguide. The utility comes from the fact that the coupling integrals,
between complex eigenfuntions or modes in regions of different depths and envi-
ronmental parameters, can be computed in closed form. The coupling integrals
between real eigenfuntions in different regions can be computed analytically
since the integrands are products of sine waves. Only three contiguous depth
integrals are needed at a change in the bottom depth. The coupling integrals
between the complex eigenfuntions are found by matrix multiplication, using
the Galerkin expansions.

The Gibbs oscillations that were avoided in the computation of the complex
eigenfunctions re-appear between adjacent regions, but these oscillations are a
valid feature of the stepwise coupled mode solution that subside away from the
corners of the steps.

The rule of thumb regarding the choice of M does not answer the fundamen-
tal question regarding the convergence of the Galerkin expansion as M → ∞.
The convergence of the Galerkin expansion and the implicit assumption that
the eigenvalues of Eq. (1) are simple roots of the characteristic equation would
likely assure that the complex symmetric matrix C in Eq. (7) is diagonalizable.
These issues require further investigation.
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